CMyCaffe.basecode.Annotation | The Annotation class is used by annotations attached to SimpleDatum's and used in SSD. |
CMyCaffe.basecode.AnnotationGroup | The AnnoationGroup class manages a group of annotations. |
►CAttribute | |
CPython.Runtime.PyPropetryAttribute | The PyPropertyAttribute represents a Python attribute. |
►CMyCaffe.basecode.descriptors.BaseDescriptor | The BaseDescriptor is the base class for all other descriptors, where descriptors are used to describe various items stored within the database. |
CMyCaffe.basecode.descriptors.DatasetDescriptor | The DatasetDescriptor class describes a dataset which contains both a training data source and testing data source. |
CMyCaffe.basecode.descriptors.GroupDescriptor | The GroupDescriptor class defines a group. |
CMyCaffe.basecode.descriptors.ProjectDescriptor | The ProjectDescriptor class contains all information describing a project, such as its: dataset, group, settings, solver description, model description, and parmeters. |
CMyCaffe.basecode.descriptors.ResultDescriptor | The ResultDescriptor class describes the results of a run. |
CMyCaffe.basecode.descriptors.SourceDescriptor | The SourceDescriptor class contains all information describing a data source. |
CMyCaffe.basecode.descriptors.StateDescriptor | The StateDescriptor class contains the information related to the state of a project incuding the solver state and weights. |
CMyCaffe.basecode.descriptors.ValueDescriptor | The ValueDescriptor class contains the description of a single value. |
►CMyCaffe.basecode.BaseParameter | The BaseParameter class is the base class for all other parameter classes. |
CMyCaffe.param.BlobProto | The BlobProto contains the descripion of a blob. |
CMyCaffe.param.BlobShape | Specifies the shape of a Blob. |
CMyCaffe.param.FillerParameter | Specifies the filler parameters used to create each Filler. |
►CMyCaffe.param.LayerParameter | Specifies the base parameter for all layers. |
CMyCaffe.layers.LayerParameterEx< T > | The LayerParameterEx class is used when sharing another Net to conserve GPU memory and extends the LayerParameter with shared Blobs for this purpose. |
►CMyCaffe.param.LayerParameterBase | The LayerParameterBase is the base class for all other layer specific parameters. |
CMyCaffe.param.AccuracyParameter | Specifies the parameters for the AccuracyLayer. |
CMyCaffe.param.ArgMaxParameter | Specifies the parameters for the ArgMaxLayer |
CMyCaffe.param.AttentionParameter | [/b DEPRECIATED, use MultiHeadAttention layers instead.] Specifies the parameters for the AttentionLayer. |
►CMyCaffe.param.BiasParameter | Specifies the parameters for the BiasLayer |
CMyCaffe.param.ScaleParameter | Specifies the parameters for the ScaleLayer. |
CMyCaffe.param.ClipParameter | Stores the parameters used by the ClipLayer |
CMyCaffe.param.ConcatParameter | Specifies the parameters for the ConcatLayer |
CMyCaffe.param.ConstantParameter | Specifies the parameters for the ConstantLayer. |
CMyCaffe.param.ContrastiveLossParameter | Specifies the parameters for the ContrastiveLossLayer. |
CMyCaffe.param.ConvolutionOctaveParameter | Specifies the parameters for the ConvolutionOctaveLayer. |
CMyCaffe.param.CropParameter | Specifies the parameters for the MyCaffe.CropLayer. |
CMyCaffe.param.DataNormalizerParameter | Specifies the parameter for the data normalizer layer. |
CMyCaffe.param.DataParameter | Specifies the parameter for the data layer. |
CMyCaffe.param.DebugParameter | Specifies the parameters used by the DebugLayer |
CMyCaffe.param.DummyDataParameter | This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or shape fields, and 0, 1 or N data fillers. This layer is initialized with the ReLUParameter. |
CMyCaffe.param.EltwiseParameter | Specifies the parameters for the EltwiseLayer. |
CMyCaffe.param.EmbedParameter | Specifies the parameters used by the EmbedLayer. |
►CMyCaffe.param.EngineParameter | Specifies whether to use the NVIDIA cuDnn version or Caffe version of a given forward/backward operation. |
CMyCaffe.param.BatchNormParameter | Specifies the parameters for the BatchNormLayer. |
CMyCaffe.param.DropoutParameter | Specifies the parameters of the DropoutLayer. |
CMyCaffe.param.EluParameter | Specifies the parameters for the EluLayer. |
►CMyCaffe.param.KernelParameter | Specifies the basic kernel parameters (used by convolution and pooling) |
CMyCaffe.param.ConvolutionParameter | Specifies the parameters for the ConvolutionLayer. The default weight filler is set to the XavierFiller, and the default bias filler is set to ConstantFiller with a value of 0.1. |
►CMyCaffe.param.PoolingParameter | Specifies the parameters for the PoolingLayer. |
CMyCaffe.param.beta.UnPoolingParameter | Specifies the parameters for the UnPoolingLayer. |
CMyCaffe.param.LRNParameter | Specifies the parameter for the LRNLayer. |
CMyCaffe.param.ReLUParameter | Specifies the parameters for the ReLULayer |
CMyCaffe.param.RecurrentParameter | Specifies the parameters used by the RecurrentLayer. |
CMyCaffe.param.SPPParameter | The SPPParameter specifies the parameters for the SPPLayer. |
CMyCaffe.param.SigmoidParameter | Specifies the parameters for the SigmoidLayer. |
CMyCaffe.param.SoftmaxParameter | Specifies the parameters for the SoftmaxLayer |
CMyCaffe.param.SwishParameter | Stores the parameters used by the SwishLayer |
CMyCaffe.param.TanhParameter | Specifies the parameters for the TanhLayer |
CMyCaffe.param.beta.MishParameter | Stores the parameters used by the MishLayer |
CMyCaffe.param.beta.SerfParameter | Stores the parameters used by the SerfLayer |
CMyCaffe.param.ExpParameter | Specifies the parameters for the ExpLayer. |
CMyCaffe.param.FlattenParameter | Specifies the parameters for the FlattenLayer. |
CMyCaffe.param.GradientScaleParameter | Specifies the parameters for the GradientScaleLayer. |
CMyCaffe.param.HDF5DataParameter | Specifies the parameter for the HDF5 data layer. |
CMyCaffe.param.HingeLossParameter | Specifies the parameters for the HingLossLayer. |
CMyCaffe.param.ImageDataParameter | Specifies the parameters for the ImageDataLayer |
CMyCaffe.param.InfogainLossParameter | Specifies the parameters for the InfogainLossLayer. |
CMyCaffe.param.InnerProductParameter | Specifies the parameters for the InnerProductLayer. |
CMyCaffe.param.InputParameter | Specifies the parameters for the InputLayer. |
CMyCaffe.param.InterpParameter | Specifies the parameters for the InterpLayer. |
CMyCaffe.param.LSTMAttentionParameter | Specifies the parameters for the LSTMAttentionLayer that provides an attention based LSTM layer used for decoding in an encoder/decoder based model. |
CMyCaffe.param.LSTMSimpleParameter | [DEPRECIATED - use LSTMAttentionParameter instead with enable_attention = false] Specifies the parameters for the LSTMSimpleLayer. |
CMyCaffe.param.LabelMappingParameter | /b DEPRECIATED (use DataLayer DataLabelMappingParameter instead) Specifies the parameters for the LabelMappingLayer. |
CMyCaffe.param.LogParameter | Specifies the parameters for the LogLayer. |
CMyCaffe.param.LossParameter | Stores the parameters used by loss layers. |
CMyCaffe.param.MVNParameter | Specifies the parameters for the MVNLayer. |
CMyCaffe.param.MathParameter | Specifies the parameters for the MathLayer. |
CMyCaffe.param.MeanErrorLossParameter | Specifies the parameters for the MeanErrorLossLayerParameter. |
CMyCaffe.param.MemoryDataParameter | Specifies the parameters used by the MemoryDataLayer. |
CMyCaffe.param.ModelDataParameter | Specifies the parameter for the model data layer. |
CMyCaffe.param.PReLUParameter | Specifies the parameters for the PReLULayer. |
CMyCaffe.param.ParameterParameter | Specifies the parameters for the ParameterLayer |
CMyCaffe.param.PowerParameter | Specifies the parameters for the PowerLayer. |
CMyCaffe.param.ReductionParameter | Specifies the parameters used by ReductionLayer. |
CMyCaffe.param.ReshapeParameter | Specifies the parameters for the ReshapeLayer. |
CMyCaffe.param.SliceParameter | Specifies the parameters for the SliceLayer. |
CMyCaffe.param.TextDataParameter | Specifies the parameter for the Text data layer. |
CMyCaffe.param.ThresholdParameter | Stores the parameters used by the ThresholdLayer |
CMyCaffe.param.TileParameter | Specifies the parameters used by the TileLayer |
CMyCaffe.param.TransformationParameter | Stores parameters used to apply transformation to the data layer's data. |
CMyCaffe.param.beta.DataSequenceParameter | Specifies the parameters for the DataSequenceLayer. |
CMyCaffe.param.beta.DecodeParameter | Specifies the parameters for the DecodeLayer and the AccuracyEncodingLayer. |
CMyCaffe.param.beta.GatherParameter | Specifies the parameters for the GatherLayer. |
CMyCaffe.param.beta.KnnParameter | Specifies the parameters for the KnnLayer. |
CMyCaffe.param.beta.MergeParameter | Specifies the parameters for the MergeLayer. |
CMyCaffe.param.beta.Normalization1Parameter | Specifies the parameters for the Normalization1Layer. |
CMyCaffe.param.beta.SqueezeParameter | Specifies the parameters for the SqueezeLayer. |
CMyCaffe.param.beta.TransposeParameter | Specifies the parameters for the TransposeLayer. |
CMyCaffe.param.beta.TripletLossParameter | Specifies the parameters for the TripletLossLayer. |
CMyCaffe.param.gpt.CausalSelfAttentionParameter | Specifies the parameters for the CausalSelfAttentionLayer. |
CMyCaffe.param.gpt.GeluParameter | Specifies the parameters for the GeluLayer. |
CMyCaffe.param.gpt.LayerNormParameter | Specifies the parameters for the LayerNormalizationLayer. |
CMyCaffe.param.gpt.MultiheadAttentionParameter | Specifies the parameters for the MultiheadAttentionLayer. |
CMyCaffe.param.gpt.NLLLossParameter | Specifies the parameters for the NLLLossLayer. |
CMyCaffe.param.gpt.PositionalEncoderParameter | Specifies the parameters for the PositionalEncoderLayer. |
►CMyCaffe.param.gpt.TokenizedDataParameter | Specifies the parameters for the TokenizedDataLayer. |
CMyCaffe.param.gpt.TokenizedDataPairsParameter | Specifies the parameters for the TokenizedDataPairsLayer. |
CMyCaffe.param.gpt.TransformerBlockParameter | Specifies the parameters for the TransformerBlockLayer. |
CMyCaffe.param.lnn.CfcParameter | Specifies the parameters used by the CfcLayer. Note, you must also fill out the CfcUnitParameter. |
CMyCaffe.param.lnn.CfcUnitParameter | Specifies the parameters for the CfcUnitLayer used by the CfCLayer. |
CMyCaffe.param.lnn.LtcUnitParameter | Specifies the parameters for the LtcUnitLayer used by the CfCLayer. |
CMyCaffe.param.nt.GramParameter | Specifies the parameters for the GramLayer |
CMyCaffe.param.nt.OneHotParameter | Specifies the parameters used by the OneHotLayer |
CMyCaffe.param.nt.ScalarParameter | Specifies the parameters for the ScalarLayer |
CMyCaffe.param.nt.TVLossParameter | Specifies the parameters for the TVLossLayer |
CMyCaffe.param.python.PythonParameter | Specifies the parameters for the PythonLayer. |
CMyCaffe.param.ssd.AnnotatedDataParameter | Specifies the parameters for the InputLayer. |
CMyCaffe.param.ssd.DetectionEvaluateParameter | Specifies the parameters for the DetectionEvaluateLayer. |
CMyCaffe.param.ssd.DetectionOutputParameter | Specifies the parameters for the DetectionOutputLayer. |
CMyCaffe.param.ssd.MultiBoxLossParameter | Specifies the parameters for the MultiBoxLossParameter. |
CMyCaffe.param.ssd.Normalization2Parameter | Specifies the parameters for the Normalization2Layer used in SSD. |
CMyCaffe.param.ssd.PermuteParameter | Specifies the parameters for the PermuteLayer. |
CMyCaffe.param.ssd.PriorBoxParameter | Specifies the parameters for the PriorBoxParameter. |
CMyCaffe.param.ssd.VideoDataParameter | Specifies the parameters for the VideoDataLayer. |
CMyCaffe.param.tft.CategoricalTransformationParameter | Specifies the parameters for the NumericInputTransformationLayer. |
CMyCaffe.param.tft.DataTemporalParameter | Specifies the parameters for the DataTemporalLayer (used in TFT models).
|
CMyCaffe.param.tft.GateAddNormParameter | Specifies the parameters for the GetAddNormLayer (Gate Add Norm).
|
CMyCaffe.param.tft.GluParameter | Specifies the parameters for the GluLayer (Gated Linear Unit).
|
CMyCaffe.param.tft.GrnParameter | Specifies the parameters for the GrnLayer (Gated Response Network).
|
CMyCaffe.param.tft.MultiHeadAttentionInterpParameter | Specifies the parameters for the MultiHeadAttentionInterpLayer (Interpretable Multi-Head Attention Layer).
|
CMyCaffe.param.tft.NumericTransformationParameter | Specifies the parameters for the NumericInputTransformationLayer. |
CMyCaffe.param.tft.QuantileAccuracyParameter | Specifies the parameters for the QuantileAccuracyLayer used in TFT models |
CMyCaffe.param.tft.QuantileLossParameter | Specifies the parameters for the QuantileLossLayer used in TFT models |
CMyCaffe.param.tft.ReshapeTemporalParameter | Specifies the parameters for the ReshapeTemporalLayer.
|
CMyCaffe.param.tft.VarSelNetParameter | Specifies the parameters for the VarSelNetLayer (Variable Selection Network).
|
CMyCaffe.param.NetParameter | Specifies the parameters use to create a Net |
CMyCaffe.param.NetState | Specifies the NetState which includes the phase, level and stage for which a given Net is to run under. |
CMyCaffe.param.NetStateRule | Specifies a NetStateRule used to determine whether a Net falls within a given include or exclude pattern. |
CMyCaffe.param.ParamSpec | Specifies training parameters (multipliers on global learning constants, and the name of other settings used for weight sharing). |
CMyCaffe.param.SolverParameter | The SolverParameter is a parameter for the solver, specifying the train and test networks. |
CMyCaffe.param.ssd.BatchSampler | Specifies a sample of batch of bboxes with provided constraints in SSD. |
CMyCaffe.param.ssd.Sampler | Specifies the sample of a bbox in the normalized space [0,1] with provided constraints used in SSD. |
CMyCaffe.param.ssd.SamplerConstraint | Specifies the constratins for selecting sampled bbox used in SSD. |
CMyCaffe.common.BatchInput | The BatchInput class stores the mini-batch index and input data. |
CMyCaffe.common.BeamSearch< T > | The BeamSearch uses the softmax output from the network and continually runs the net on each output (using the output as input) until the end of token is reached. The beam-search tree is returned. |
CMyCaffe.basecode.BinaryData | The BinaryData class is used to pack and unpack DataCriteria binary data, optionally stored within each SimpleDatum. |
►CBinaryReader | |
CMyCaffe.db.stream.WAVReader | The WAVReader is an extension of the BinaryReader and is used to read WAV files. |
►CBinaryWriter | |
CMyCaffe.db.stream.WAVWriter | The WAVWriter is a special BinaryWriter used to write WAV files. |
CMyCaffe.common.BlobDebugInformation< T > | The BlobDebugInformation describes debug information relating to a given Blob in a given Layer. |
CMyCaffe.common.BlobName | The BlobName class is used to build unique blob names. |
CMyCaffe.basecode.Bucket | The Bucket class contains the information describing a single range of values within a BucketCollection. |
CMyCaffe.basecode.Bytemap | The Bytemap operates similar to a bitmap but is actually just an array of bytes. |
CMyCaffe.data.CiFar10DataLoader | The CiFar10DataLoader is used to create the CIFAR-10 dataset and load it into the database managed by the MyCaffe Image Database. |
CMyCaffe.data.CiFar10DataParameters | Contains the dataset parameters used to create the CIFAR-10 dataset. |
►CPython.Runtime.ClrMemberInfo | The ClrMemberInfo represents clr information. |
CPython.Runtime.ClrFieldInfo | The ClrFieldInfo defines the clr field information. |
CPython.Runtime.ClrPropertyInfo | The ClrPropertyInfo specifies the clr property information. |
CMyCaffe.basecode.ColorMapper | The ColorMapper maps a value within a number range, to a Color within a color scheme. |
►CComponent | |
CMyCaffe.converter.pytorch.MyCaffeConversionControl< T > | The MyCaffeConversionControl is used to convert a MyCaffe model to a PyTorch model. |
CMyCaffe.db.image.MyCaffeImageDatabase | The MyCaffeImageDatabase provides an enhanced in-memory image database used for quick image retrieval. |
CMyCaffe.db.image.MyCaffeImageDatabase2 | [V2 Image Database] The MyCaffeImageDatabase2 provides an enhanced in-memory image database used for quick image retrieval. |
CMyCaffe.trainers.MyCaffeTrainerDual | The MyCaffeTraininerDual is used to perform both reinforcement and recurrent learning training tasks on an instance of the MyCaffeControl. |
CMyCaffe.trainers.MyCaffeTrainerRL | (Depreciated - use MyCaffeTrainerDual instead.) The MyCaffeTraininerRL is used to perform reinforcement learning training tasks on an instance of the MyCaffeControl. |
CMyCaffe.trainers.MyCaffeTrainerRNN | (Depreciated - use MyCaffeTrainerDual instead.) The MyCaffeTrainerRNN is used to perform recurrent neural-network training tasks on an instance of the MyCaffeControl. |
►CSystem.ComponentModel.Component | The Component class is a standard Microsoft.NET class that implements the IComponent interface and is the base class for all Components. See the Windows .NET Framework for more information. |
CMyCaffe.MyCaffeControl< T > | The MyCaffeControl is the main object used to manage all training, testing and running of the MyCaffe system. |
CMyCaffe.converter.onnx.MyCaffeConversionControl< T > | The MyCaffeConversionControl handles converting between MyCaffe and ONNX formats. The OnnxControl is used to read and write ONNX files. |
CMyCaffe.db.stream.MyCaffeStreamDatabase | The MyCaffeStreamDatabase provides a streaming data input source to MyCaffe gyms used as input for dynamic, reinforcement learning. |
CMyCaffe.db.temporal.MyCaffeTemporalDatabase | [Temporal Database] The MyCaffeTemporalDatabase provides an enhanced in-memory temporal database used for quick temporal data retrieval. |
CMyCaffe.preprocessor.MyCaffeDataPreprocessor< T > | The MyCaffeDataPreprocessor handles adding data from a streaming database to the GPU and then pre-processing the data once on the GPU making it ready for use with the Data Gym. |
CMyCaffe.basecode.ConnectInfo | The ConnectInfo class specifies the server, database and username/password used to connect to a database. |
CMyCaffe.common.CudaDnnMemoryTracker< T > | The CudaDnnMemoryTracker is used for diagnostics in that it helps estimate the amount of memory that a Net will use. |
CMyCaffe.gym.python.CurrentState | The State contains the current state of the gym. |
CMyCaffe.data.Cursor< T > | The Cursor is used to traverse through a given data source within the database. |
CMyCaffe.db.stream.CustomQueryCollection | The CustomQueryCollection manages the external Custom Queries placed in the |
CMyCaffe.db.image.DatabaseInstanceQuery | The DatabaseInstanceQuery class is used to find all installed instances of SQL on a given machine. |
CMyCaffe.db.temporal.DatabaseLoader | The DatasetLoader is used to load descriptors from the database. |
CMyCaffe.db.image.DatabaseManagement | The DatabaseManagement class is used to create the image database. |
CMyCaffe.param.DataDebugParameter | The DataDebugParameter is used by the DataParameter when the 'enable_debugging' = True. |
CMyCaffe.db.stream.DataItem | The DataItem manages one synchronized data item where the first element is the sync field. |
CMyCaffe.db.stream.DataItemCollection | The DataItemCollection contains the collection of synchronized data items collected from all custom queries. |
CMyCaffe.param.DataNoiseParameter | The DataNoiseParameter is used by the DataParameter when the 'enable_noise_for_nonmatch' = True, which is used when 'images_per_blob' > 1. |
CMyCaffe.gym.DataPoint | The DataPoint contains the data used when training. |
CMyCaffe.layers.tft.DataSchema | The DataSchema class is used by the DataTemporalLayer to load the data schema describing the NPY files containing the dataset. |
CMyCaffe.db.temporal.DataSet | The DataSet class loads the training and testing data. |
CMyCaffe.data.DB< T > | A generic database class used to connect to the underlying database and create a Cursor that traverses through it. |
►CDbConfiguration | |
CMyCaffe.db.image.DNNConfiguration | The DNNConfiguration class used to define the connection strategy. |
CMyCaffe.db.image.DbItem | Specifies a database item used when querying boosted items. |
CMyCaffe.db.image.DNNEntities | The DNNEntities class defines the entities used to connecto the database via Entity Frameworks. |
CMyCaffe.db.temporal.DNNEntitiesTemporal | The DNNEntities class defines the entities used to connecto the database via Entity Frameworks. |
►CDuplexClientBase | |
CMyCaffe.gym.MyCaffeGymUiProxy | The MyCaffeGymUiProxy is used to interact with the MyCaffeGymUiService. |
►CMyCaffe.db.image.EntitiesConnection | The EntitiesConnection class defines how to connect to the database via Entity Frameworks. |
CMyCaffe.db.temporal.EntitiesConnectionTemporal | The EntitiesConnection class defines how to connect to the database via Entity Frameworks. |
►CEventArgs | |
CMyCaffe.basecode.CalculateImageMeanArgs | The CalculateImageMeanArgs is passed as an argument to the MyCaffeImageDatabase::OnCalculateImageMean event. |
►CMyCaffe.basecode.LogProgressArg | The LogProgressArg is passed as an argument to the Log::OnProgress event. |
CMyCaffe.basecode.LogArg | The LogArg is passed as an argument to the Log::OnWriteLine event. |
CMyCaffe.basecode.LossArgs | The LossArgs contains the loss values for a given batch. |
CMyCaffe.basecode.OverrideProjectArgs | The OverrideProjectArgs is passed as an argument to the OnOverrideModel and OnOverrideSolver events fired by the ProjectEx class. |
CMyCaffe.common.ActionStateArgs< T > | The ActionStateArgs are sent to the DoWork event when fired from the InternalThreadEntry. |
CMyCaffe.common.CustomForwardBackArgs< T > | The CustomForwardBackArgs provide the arguments to the OnCustomForwardBack event within the Solver Step function. |
CMyCaffe.common.GetBytesArgs | The GetBytesArgs is passed along to the SnapshotArgs::OnGetWeights and SnapshotArgs::OnGetState events. |
CMyCaffe.common.GetConversionBlobArgs< T > | The GetConversionBlobArgs are passed to the Layer::OnGetConversionBlobs event which fires each time a blob needs to be converted form half to base or back. |
CMyCaffe.common.GetIterationArgs | The GetIterationArgs is sent bubbled up to the solver when a layer needs to know the curret training iteration. |
CMyCaffe.common.GetWorkBlobArgs< T > | The GetWorkBlobArgs are passed to the Layer::OnGetWorkBlob event which is supported for debugging only. |
CMyCaffe.common.GradientsReadyArgs | The GradientsReadyArgs is sent to the Solver::OnGradientsReady event which fires at the end of each Solver::Step. |
CMyCaffe.common.SnapshotArgs | The SnapshotArgs is sent to the Solver::OnSnapshot event which fires each time the Solver::Snapshot method is called. |
CMyCaffe.common.TestArgs | The TestArgs are passed to the Solver::OnTest event. |
CMyCaffe.common.TestResultArgs< T > | The TestResultArgs are passed to the Solver::OnTestResults event. |
►CMyCaffe.common.TestingIterationArgs< T > | Specifies the TestingIterationArgs sent to the Solver::OnTestingIteration, which is called at the end of a testing cycle. |
CMyCaffe.common.TrainingIterationArgs< T > | The TrainingIterationArgs is sent to the Solver::OnTrainingIteration event that fires at the end of a training cycle. |
CMyCaffe.common.WorkspaceArgs | The WorkspaceArgs are passed to both the Layer::OnSetWorkspace and Layer::OnGetWorkspace events. |
CMyCaffe.data.ProgressArgs | Defines the arguments sent to the OnProgress and OnError events. |
CMyCaffe.extras.NeuralStyleIntermediateOutputArgs | The NeuralStyleIntermediateOutputArgs contains the arguments sent to the OnIntermediateOutput event. |
CMyCaffe.layers.LastBatchLoadedArgs | Specifies the arguments sent to the OnBatchLoad event used when synchronizing between Data Layers. |
CMyCaffe.layers.MemoryDataLayerGetDataArgs | The MemoryDataLayerGetDataArgs class is passed to the OnGetData event. |
CMyCaffe.layers.MemoryDataLayerPackDataArgs< T > | The MemoryDataLayerPackDataArgs is passed to the OnDataPack event which fires each time the data received in AddDatumVector needs to be packed into a specific ordering as is the case when using an LSTM network. |
CMyCaffe.layers.MemoryLossLayerGetLossArgs< T > | The MemoryLossLayerGetLossArgs class is passed to the OnGetLoss event. |
CMyCaffe.layers.beta.ModelData.OnGetDataArgs | Defines the arguments passed to the OnGetData event. |
CMyCaffe.layers.beta.TextData.OnGetDataArgs | Defines the arguments passed to the OnGetData event. |
CMyCaffe.param.VerifyBatchSizeArgs | The VerifyBatchSizeArgs class defines the arguments of the OnVerifyBatchSize event. |
CMyCaffe.trainers.ApplyUpdateArgs< T > | The ApplyUpdateArgs is passed to the OnApplyUpdates event. |
CMyCaffe.trainers.ConvertOutputArgs | The ConvertOutputArgs is passed to the OnConvertOutput event. |
CMyCaffe.trainers.GetDataArgs | The GetDataArgs is passed to the OnGetData event to retrieve data. |
CMyCaffe.trainers.GetStatusArgs | The GetStatusArgs is passed to the OnGetStatus event. |
CMyCaffe.trainers.InitializeArgs | The InitializeArgs is passed to the OnInitialize event. |
CMyCaffe.trainers.OverlayArgs | The OverlayArgs is passed ot the OnOverlay event, optionally fired just before displaying a gym image. |
CMyCaffe.trainers.TestAccuracyUpdateArgs | The TestAccuracyUpdateArgs are passed to the OnTestAccuracyUpdate event. |
CMyCaffe.trainers.WaitArgs | The WaitArgs is passed to the OnWait event. |
CMyCaffe.layers.tft.Field | The Field class manages a single field. |
►CMyCaffe.fillers.Filler< T > | Abstract Filler class used to fill blobs with values. |
CMyCaffe.fillers.BilinearFiller< T > | Fills a Blob with coefficients for bilinear interpolation. |
CMyCaffe.fillers.ConstantFiller< T > | Fills a Blob with constant values x = c. |
CMyCaffe.fillers.GaussianFiller< T > | Fills a Blob with Gaussian-distributed values . |
CMyCaffe.fillers.MsraFiller< T > | Fills a Blob with values where is set inversely proportionla to number of incomming nodes, outgoing nodes, or their average. |
CMyCaffe.fillers.PositiveUnitballFiller< T > | Fills a Blob with values such that . |
CMyCaffe.fillers.SequenceFiller< T > | Fills a Blob with a sequence of values x0 = c; x1 = c + 0.01... |
CMyCaffe.fillers.UniformFiller< T > | Fills a Blob with uniformly distributed values |
CMyCaffe.fillers.XavierFiller< T > | Fills a Blob with values where is set inversely proportional to number of incoming nodes, outgoing nodes, or their average. |
►CForm | |
CMyCaffe.gym.FormActionImage | The FormActionImage displays the action image (if one exists) |
CMyCaffe.gym.FormGym | The FormGym displays the gym visualization. |
CMyCaffe.gym.FormGyms | The FormGyms dialog displays the available gyms. |
CMyCaffe.param.ui.FormProperty | The FormProperty window is used to edit a given key/value pair. |
►CMyCaffe.common.ForwardArgs< T > | The ForwardArgs are passed to the OnForward event of the EventLayer. |
CMyCaffe.common.BackwardArgs< T > | The BackwardArgs are passed to the OnBackward event of the EventLayer. |
►CMyCaffe.basecode.GenericList< DataQuery > | |
CMyCaffe.db.stream.DataQueryCollection | The DataQueryCollection manages all active data queries. |
CMyCaffe.basecode.GenericList< MemoryItem > | |
►CMyCaffe.gym.GeomObj | The GoomObj is the base class for all other gometric objects used to draw Gym objects. |
CMyCaffe.gym.GeomEllipse | The GeomEllipse object is used to render an ellipse. |
CMyCaffe.gym.GeomLine | The GeomLine object is used to render a line. |
CMyCaffe.gym.GeomPolyLine | The GeomPolyLine object is used to render an spline. |
CMyCaffe.gym.GeomPolygon | The GeomPolygon object is used to render an polygon. |
CMyCaffe.gym.GeomRectangle | The GeomEllipse object is used to render an rectangle. |
CMyCaffe.gym.GeomView | The GeomView manages and renders a collection of Geometric objects. |
►CMyCaffe.basecode.IBinaryPersist | The IBinaryPersist interface provides generic save and load functionality. |
CMyCaffe.param.BlobProto | The BlobProto contains the descripion of a blob. |
CMyCaffe.param.BlobShape | Specifies the shape of a Blob. |
CMyCaffe.param.LayerParameter | Specifies the base parameter for all layers. |
CMyCaffe.param.LayerParameterBase | The LayerParameterBase is the base class for all other layer specific parameters. |
CMyCaffe.param.NetStateRule | Specifies a NetStateRule used to determine whether a Net falls within a given include or exclude pattern. |
CMyCaffe.param.ParamSpec | Specifies training parameters (multipliers on global learning constants, and the name of other settings used for weight sharing). |
CMyCaffe.param.ssd.BatchSampler | Specifies a sample of batch of bboxes with provided constraints in SSD. |
CMyCaffe.param.ssd.Sampler | Specifies the sample of a bbox in the normalized space [0,1] with provided constraints used in SSD. |
CMyCaffe.param.ssd.SamplerConstraint | Specifies the constratins for selecting sampled bbox used in SSD. |
►CICloneable | |
CMyCaffe.param.BlobProto | The BlobProto contains the descripion of a blob. |
CMyCaffe.param.BlobShape | Specifies the shape of a Blob. |
CMyCaffe.param.FillerParameter | Specifies the filler parameters used to create each Filler. |
CMyCaffe.param.LayerParameter | Specifies the base parameter for all layers. |
CMyCaffe.param.NetState | Specifies the NetState which includes the phase, level and stage for which a given Net is to run under. |
CMyCaffe.param.NetStateRule | Specifies a NetStateRule used to determine whether a Net falls within a given include or exclude pattern. |
CMyCaffe.param.ParamSpec | Specifies training parameters (multipliers on global learning constants, and the name of other settings used for weight sharing). |
CMyCaffe.param.ssd.BatchSampler | Specifies a sample of batch of bboxes with provided constraints in SSD. |
CMyCaffe.param.ssd.Sampler | Specifies the sample of a bbox in the normalized space [0,1] with provided constraints used in SSD. |
CMyCaffe.param.ssd.SamplerConstraint | Specifies the constratins for selecting sampled bbox used in SSD. |
►CIComparable | |
CMyCaffe.param.BlobProto | The BlobProto contains the descripion of a blob. |
CMyCaffe.param.BlobShape | Specifies the shape of a Blob. |
CMyCaffe.param.LayerParameter | Specifies the base parameter for all layers. |
CMyCaffe.param.NetState | Specifies the NetState which includes the phase, level and stage for which a given Net is to run under. |
CMyCaffe.param.NetStateRule | Specifies a NetStateRule used to determine whether a Net falls within a given include or exclude pattern. |
CMyCaffe.param.ssd.BatchSampler | Specifies a sample of batch of bboxes with provided constraints in SSD. |
CMyCaffe.param.ssd.Sampler | Specifies the sample of a bbox in the normalized space [0,1] with provided constraints used in SSD. |
CMyCaffe.param.ssd.SamplerConstraint | Specifies the constratins for selecting sampled bbox used in SSD. |
CMyCaffe.layers.gpt.ICustomTokenInput | The ICustomTokenInput interface specifies the interface that all custom token inputs implement. |
►CIDisposable | |
CMyCaffe.MyCaffeControl< T > | The MyCaffeControl is the main object used to manage all training, testing and running of the MyCaffe system. |
CMyCaffe.basecode.CancelEvent | The CancelEvent provides an extension to the manual cancel event that allows for overriding the manual cancel event. |
CMyCaffe.basecode.DirectBitmap | The DirectBitmap class provides an efficient bitmap creating class. |
CMyCaffe.common.BBoxUtility< T > | The BBox class processes the NormalizedBBox data used with SSD. |
CMyCaffe.common.Blob< T > | The Blob is the main holder of data that moves through the Layers of the Net. |
CMyCaffe.common.BlobCollection< T > | The BlobCollection contains a list of Blobs. |
CMyCaffe.common.BlockingQueue< T > | The BlockingQueue is used for synchronized Queue operations. |
CMyCaffe.common.Cache< T > | The Cache class is used to cache blobs over time. |
CMyCaffe.common.ComputeGraph< T > | The ComputeGraph class provides a simple computation graph of operations used in a forward pass that are stored in an array on each call and then unwound with calls that calculate the gradients on the backward pass. |
CMyCaffe.common.CudaDnn< T > | The CudaDnn object is the main interface to the Low-Level Cuda C++ DLL. |
CMyCaffe.common.DebugInformation< T > | The DebugInformation contains information used to help debug the Layers of a Net while it is training. |
►CMyCaffe.common.GPUParams< T > | The GPUParams contains the connection to the low-level Cuda, and the stream associated with this instance. |
CMyCaffe.common.NCCL< T > | The NCCL class manages the multi-GPU operations using the low-level NCCL functionality provided by the low-level Cuda Dnn DLL. |
CMyCaffe.common.HostBuffer< T > | The HostBuffer helps manage host memory, often used when implementing CPU versions of a function or layer. |
►CMyCaffe.common.InternalThread< T > | The InternalThread manages an internal thread used for Parallel and data collection operations. |
CMyCaffe.common.Worker< T > | The Worker manages each 'non' root sover running, where each Worker operates on a different GPU. |
CMyCaffe.common.NCCL< T > | The NCCL class manages the multi-GPU operations using the low-level NCCL functionality provided by the low-level Cuda Dnn DLL. |
CMyCaffe.common.Net< T > | Connects Layer's together into a direct acrylic graph (DAG) specified by a NetParameter |
CMyCaffe.common.NumpyFile< T > | The NumpyFile reads data from a numpy file in the base type specified. |
CMyCaffe.common.SsdSampler< T > | The SsdSampler is used by the SSD algorithm to sample BBoxes. |
CMyCaffe.common.SyncedMemory< T > | The SyncedMemory manages the low-level connection between the GPU and host memory. |
CMyCaffe.data.BinaryFile | The BinaryFile class is used to manage binary files used by the MNIST dataset creator. |
CMyCaffe.data.DataTransformer< T > | Applies common transformations to the input data, such as scaling, mirroring, subtracting the image mean... |
►CMyCaffe.db.image.Database | The Database class manages the actual connection to the physical database using Entity Framworks from Microsoft. |
CMyCaffe.db.temporal.DatabaseTemporal | The DatabaseTemporal is used to manage all temporal specific database objects. |
CMyCaffe.db.image.DatasetEx | The DatasetEx class provides the in-memory dataset functionality that is used by the image database to manage data sets.
Both the Testing and Training ImageSet objects are managed by the DatasetEx, which in turn coordinates the loading and usage of each. |
CMyCaffe.db.image.DatasetEx2 | [V2 Image Database] The DatasetEx2 class provides the in-memory dataset functionality that is used by the image database to manage data sets.
Both the Testing and Training ImageSet2 objects are managed by the DatasetEx2, which in turn coordinates the loading and usage of each. |
CMyCaffe.db.image.DatasetExCollection | The DatasetExCollection contains a list of DatasetEx objects. |
CMyCaffe.db.image.DatasetExCollection2 | [V2 Image Database] The DatasetExCollection2 contains a list of DatasetEx2 objects. |
CMyCaffe.db.image.DatasetFactory | The DatasetFactory manages the connection to the Database object. |
CMyCaffe.db.image.ImageSet | The ImageSet class contains the list of image for a data source as well as a list of LabelSets that map into it. |
CMyCaffe.db.image.ImageSet2 | [V2 Image Database] The ImageSet2 manages the data source data including the master list of images, and the master indexes that describe the data source layout (e.g. labels, boosts, etc). |
►CMyCaffe.db.image.ImageSetBase | The ImageSetBase class contains the list of image for a data source as well as a list of LabelSets that map into it. |
CMyCaffe.db.image.ImageSet2 | [V2 Image Database] The ImageSet2 manages the data source data including the master list of images, and the master indexes that describe the data source layout (e.g. labels, boosts, etc). |
CMyCaffe.db.image.LabelSet | The LabelSet 'points' into the main image list via references objects that are already created in the main image list of the ImageSet. |
►CMyCaffe.db.image.MasterIndexes | The MasterIndexes stores the indexes that define the index structure of the data source data. |
CMyCaffe.db.image.QueryState | Initially the QueryState is copied from the MasterIndexes and during each query is altered by removing items already observed. Once empty, each Index within the QueryState is then refreshed with the corresponding MasterIndexes ensuring that all images are hit over time. |
CMyCaffe.db.image.MasterList | The MasterList is responsible for loading and managing access to the master list of images for a data source. |
CMyCaffe.db.image.QueryStateCollection | The QueryStateCollection manages all query states used by matching the QueryState handles with the QueryStates where each handle points to both the training set query state and testing set query state. |
CMyCaffe.db.stream.DataQuery | The DataQuery manages a custom query interface and queues data from the custom query via an internal query thread. |
CMyCaffe.db.stream.DataQueryCollection | The DataQueryCollection manages all active data queries. |
CMyCaffe.db.temporal.DatasetCollection | The DatasetCollection manages a set of datasets. |
CMyCaffe.db.temporal.TemporalSet | The TemporalSet manages a set of temporal data for a given data source. |
CMyCaffe.extras.DeepDraw< T > | The DeepDraw class implements both deep drawing and deep dream as originally introduced by Google. |
CMyCaffe.extras.NeuralStyleTransfer< T > | The NeuralStyleTransfer object uses the GramLayer, TVLossLayer and LBFGSSolver to perform the neural style transfer algorithm. |
CMyCaffe.extras.Octaves | The Octave class defines the setting sused when images are generated. |
CMyCaffe.gym.AtariGym | The Atari Gym provides acess to the Atari-2600 Emulator from Stella (https://github.com/stella-emu/stella) via a slightly modified version of the Arcade-Learning-Envrionment (ALE) from mgbellemare (https://github.com/mgbellemare/Arcade-Learning-Environment). |
CMyCaffe.gym.CurveGym | The Curve Gym provides a simulation of continuous curve such as Sin or Cos. |
CMyCaffe.gym.DataGeneralGym | The DataGeneral Gym provides access to the MyCaffe Streaming Database with GENERAL query types. |
CMyCaffe.gym.ModelGym | The Model Gym runs a given Project over the dataset specified within the project where each step advanced to another data item within the project's dataset. |
CMyCaffe.gym.python.MyCaffePythonGym | The MyCaffePythonGym class provides a simple interface that can easily be used from within Python. |
CMyCaffe.layers.Batch< T > | The Batch contains both the data and label Blobs of the batch. |
►CMyCaffe.layers.Layer< T > | An interface for the units of computation which can be composed into a Net. |
CMyCaffe.layers.AccuracyLayer< T > | The AccuracyLayer computes the classification accuracy for a one-of-many classification task. This layer is initialized with the MyCaffe.param.AccuracyParameter. |
CMyCaffe.layers.ArgMaxLayer< T > | The ArgMaxLayer computes the index of the K max values for each datum across all dimensions . This layer is initialized with the MyCaffe.param.ArgMaxParameter. |
CMyCaffe.layers.AttentionLayer< T > | [DEPRECIATED] The AttentionLayer provides focus for LSTM based encoder/decoder models. |
►CMyCaffe.layers.BaseConvolutionLayer< T > | The BaseConvolutionLayer is an abstract base class that factors out BLAS code common to ConvolutionLayer and DeconvolutionLayer |
CMyCaffe.layers.ConvolutionLayer< T > | The ConvolutionLayer convolves the input image with a bank of learned filters, and (optionally) adds biases. This layer is initialized with the MyCaffe.param.ConvolutionParameter. |
CMyCaffe.layers.DeconvolutionLayer< T > | The DeconvolutionLayer convolves the input with a bank of learned filtered, and (optionally) add biases, treating filters and convolution parameters in the opposite sense as ConvolutionLayer. This layer is initialized with the MyCaffe.param.ConvolutionParameter |
►CMyCaffe.layers.BaseDataLayer< T > | The BaseDataLayer is the base class for data Layers that feed Blobs of data into the Net. |
►CMyCaffe.layers.BasePrefetchingDataLayer< T > | The BasePrefetchingDataLayer is the base class for data Layers that pre-fetch data before feeding the Blobs of data into the Net. |
CMyCaffe.layers.DataLayer< T > | The DataLayer loads data from the IXImageDatabase database. This layer is initialized with the MyCaffe.param.DataParameter. |
CMyCaffe.layers.ImageDataLayer< T > | The ImageDataLayer loads data from the image files located in the root directory specified. This layer is initialized with the MyCaffe.param.ImageDataParameter. |
CMyCaffe.layers.ssd.AnnotatedDataLayer< T > | The AnnotatedDataLayer provides annotated data to the Net by assigning top Blobs directly. This layer is initialized with the MyCaffe.param.AnnotatedDataParameter. |
CMyCaffe.layers.ssd.VideoDataLayer< T > | The VideoDataLayer provides data to the Net from a WebCam or Video file. This layer is initialized with the MyCaffe.param.VideoDataParameter. |
CMyCaffe.layers.MemoryDataLayer< T > | The MemoryDataLayer provides data to the Net from memory. This layer is initialized with the MyCaffe.param.MemoryDataParameter. |
CMyCaffe.layers.BatchNormLayer< T > | The BatchNormLayer normalizes the input to have 0-mean and/or unit (1) variance across the batch. This layer is initialized with the BatchNormParameter. |
CMyCaffe.layers.BatchReindexLayer< T > | The BatchReindexLayer provides an index into the input blob along its first axis. |
CMyCaffe.layers.BiasLayer< T > | The BiasLayer computes a sum of two input Blobs, with the shape of the latter Blob 'broadcast' to match the shape of the former. Equivalent to tiling the latter Blob, then computing the elementwise sum. This layer is initialized with the MyCaffe.param.BiasParameter. |
CMyCaffe.layers.ConcatLayer< T > | The ConcatLayer takes at least two Blobs and concatentates them along either the num or channel dimension, outputing the result. This layer is initialized with the MyCaffe.param.ConcatParameter. |
CMyCaffe.layers.ConstantLayer< T > | The ConstantLayer provides a layer that just outputs a constant value. This layer is initialized with the MyCaffe.param.ConstantParameter. |
CMyCaffe.layers.CopyLayer< T > | The CopyLayer copies the src bottom to the dst bottom. The layer has no output. |
CMyCaffe.layers.CropLayer< T > | The CropLayer takes a Blob and crops it to the shape specified by the second input Blob, across all dimensions after the specified axis |
CMyCaffe.layers.DataNormalizerLayer< T > | The DataNormalizerLayer normalizes the input data (and optionally label) based on the normalization operations specified in the layer parameter. |
CMyCaffe.layers.DebugLayer< T > | The DebugLayer merely stores, up to max_stored_batches, batches of input which are then optionally used by various debug visualizers. This layer is initialized with the MyCaffe.param.DebugParameter. |
CMyCaffe.layers.DummyDataLayer< T > | The DummyDataLayer provides data to the Net generated by a Filler. This layer is initialized with the MyCaffe.param.DummyDataParameter. |
CMyCaffe.layers.EltwiseLayer< T > | The EltwiseLayer computes elementwise oeprations, such as product and sum, along multiple input blobs. This layer is initialized with the MyCaffe.param.EltwiseParameter. |
CMyCaffe.layers.EmbedLayer< T > | The EmbedLayer is a layer for learning 'embeddings' of one-hot vector input. This layer is initialized with the MyCaffe.param.EmbedParameter. |
CMyCaffe.layers.FilterLayer< T > | The FilterLayer takes two+ Blobs, interprets last Blob as a selector and filters remaining Blobs accordingly with selector data (0 means that the corresponding item has to be filtered, non-zero means that corresponding item needs to stay). |
CMyCaffe.layers.FlattenLayer< T > | The FlattenLayer reshapes the input Blob into flat vectors This layer is initialized with the MyCaffe.param.FlattenParameter. |
CMyCaffe.layers.Im2colLayer< T > | The Im2ColLayer is a helper layer for image operations that rearranges image regions into column vectors.
|
CMyCaffe.layers.InnerProductLayer< T > | The InnerProductLayer, also know as a 'fully-connected' layer, computes the inner product with a set of learned weights, and (optionally) adds biases. This layer is initialized with the MyCaffe.param.InnerProductParameter. |
CMyCaffe.layers.InputLayer< T > | The InputLayer provides data to the Net by assigning top Blobs directly. This layer is initialized with the MyCaffe.param.InputParameter. |
CMyCaffe.layers.LRNLayer< T > | The "Local Response Normalization" LRNLayer is used to normalize the input in a local region across or within feature maps. This layer is initialized with the MyCaffe.param.LRNParameter. |
CMyCaffe.layers.LSTMAttentionLayer< T > | The LSTMAttentionLayer adds attention to the long-short term memory layer and is used in encoder/decoder models. To use attention, just set 'enable_attention'=true. When disabled, this layer operates like a standard LSTM layer where inputs are in the shape T,B,I with T=timesteps, B=batch and I=input |
CMyCaffe.layers.LSTMSimpleLayer< T > | [DEPRECIATED - use LSTMAttentionLayer instead with enable_attention = false] The LSTMSimpleLayer is a simpe version of the long-short term memory layer. This layer is initialized with the MyCaffe.param.LSTMSimpleParameter. |
CMyCaffe.layers.LSTMUnitLayer< T > | The LSTMUnitLayer is a helper for LSTMLayer that computes a single timestep of the non-linearity of the LSTM, producing the updated cell and hidden states. |
►CMyCaffe.layers.LossLayer< T > | The LossLayer provides an interface for Layer's that take two blobs as input – usually (1) predictions and (2) ground-truth labels – and output a singleton blob representing the loss. This layer is initialized with the MyCaffe.param.LossParameter. |
CMyCaffe.layers.ContrastiveLossLayer< T > | The ContrastiveLossLayer computes the contrastive loss where . This layer is initialized with the MyCaffe.param.ContrastiveLossParameter. |
CMyCaffe.layers.EuclideanLossLayer< T > | The EuclideanLossLayer computes the Euclidean (L2) loss for real-valued regression tasks. |
CMyCaffe.layers.HingeLossLayer< T > | The HingeLossLayer computes the hinge loss for a one-of-many classification task. This layer is initialized with the MyCaffe.param.HingeLossParameter. |
CMyCaffe.layers.InfogainLossLayer< T > | The InforgainLossLayer is a generalization of SoftmaxWithLossLayer that takes an 'information gain' (infogain) matrix specifying the 'value of all label pairs. This layer is initialized with the MyCaffe.param.InfogainLossParameter. |
CMyCaffe.layers.MemoryLossLayer< T > | The MemoryLossLayer provides a method of performing a custom loss functionality. Similar to the MemoryDataLayer, the MemoryLossLayer supports an event used to get the loss value. This event is called OnGetLoss, which once retrieved is used for learning on the backward pass. |
CMyCaffe.layers.MultinomialLogisticLossLayer< T > | The MultinomialLogicistLossLayer computes the multinomial logistc loss for a one-of-many classification task, directly taking a predicted probability distribution as input. |
CMyCaffe.layers.QuantileLossLayer< T > | The QuantileLossLayer computes the quantile loss for real-valued regression tasks. |
CMyCaffe.layers.SigmoidCrossEntropyLossLayer< T > | The SigmoidCrossEntropyLayer computes the cross-entropy (logisitic) loss and is often used for predicting targets interpreted as probabilities. |
CMyCaffe.layers.SoftmaxCrossEntropy2LossLayer< T > | The SoftmaxCrossEntropy2Layer computes the cross-entropy (logisitic) loss and is often used for predicting targets interpreted as probabilities. |
CMyCaffe.layers.SoftmaxCrossEntropyLossLayer< T > | The SoftmaxCrossEntropyLossLayer computes the cross-entropy (logisitic) loss and is often used for predicting targets interpreted as probabilities in reinforcement learning. |
CMyCaffe.layers.SoftmaxLossLayer< T > | Computes the multinomial logistic loss for a one-of-many classification task, passing real-valued predictions through a softmax to get a probability distribution over classes. |
CMyCaffe.layers.beta.MeanErrorLossLayer< T > | The MeanErrorLossLayer computes losses based on various different Mean Error methods as shown below. This layer is used to solve regression problems such as time-series predictions |
CMyCaffe.layers.beta.TripletLossLayer< T > | TripletLoss Layer - this is the triplet loss layer used to calculate the triplet loss and gradients using the triplet loss method of learning. The triplet loss method involves image triplets using the following format: Anchor (A), Positives (P) and Negatives (N) |
CMyCaffe.layers.gpt.NLLLossLayer< T > | Computes the nll loss for a one-of-many classification task, passing real-valued predictions (from a softmax or logsoftmax) to get a probability distribution over classes. |
CMyCaffe.layers.nt.TVLossLayer< T > | The TVLossLayer computes total variation loss as described by 'Mahendran' et al., and used in Neural Style. |
CMyCaffe.layers.ssd.MultiBoxLossLayer< T > | The MultiBoxLossLayer performs multibox operations including the following: |
CMyCaffe.layers.ssd.SmoothL1LossLayer< T > | Fast R-CNN Copyright (c) Microsoft Licensed under The MIT License [see fast-rcnn/LICENSE for details] Originally written in C by Ross Girshick Modified by Wei Liu in C Rewritten in C# by SignalPop LLC |
CMyCaffe.layers.MVNLayer< T > | The "Mean-Variance Normalization" MVNLayer normalizes the input to have 0-mean and/or unit (1) variance. This layer is initialized with the MyCaffe.param.MVNParameter. |
►CMyCaffe.layers.NeuronLayer< T > | The NeuronLayer is an interface for layers that take one blob as input (x) and produce only equally-sized blob as output (y), where each element of the output depends only on the corresponding input element. |
CMyCaffe.layers.AbsValLayer< T > | The AbsValLayer computes the absolute value of the input. |
CMyCaffe.layers.BNLLLayer< T > | The Binomial Normal Log Liklihod Layer. |
CMyCaffe.layers.ClipLayer< T > | The ClipLayer provides a neuron layer that clips the data to fit within the [min,max] range. This layer is initialized with the MyCaffe.param.ClipParameter. |
CMyCaffe.layers.DropoutLayer< T > | During training only, sets a random portion of to 0, adjusting the rest of the vector magnitude accordingly This layer is initialized with the MyCaffe.param.DropoutParameter. |
CMyCaffe.layers.ELULayer< T > | The ELULayer computes exponential linear unit non-linearity . This layer is initialized with the MyCaffe.param.EluParameter. |
CMyCaffe.layers.ExpLayer< T > | The ExpLayer which computes the exponential of the input. This layer is initialized with the MyCaffe.param.ExpParameter. |
CMyCaffe.layers.GradientScaleLayer< T > | The GradientScaleLayer which scales the deltas during the backpropagation. This layer is initialized with the MyCaffe.param.GradientScaleParameter. |
CMyCaffe.layers.LabelMappingLayer< T > | /b DEPRECIATED (use DataLayer DataLabelMappingParameter instead) The LabelMappingLayer converts original labels to new labels specified by the label mapping. This layer is initialized with the MyCaffe.param.LabelMappingParameter. |
CMyCaffe.layers.LogLayer< T > | The LogLayer computes the log of the input. This layer is initialized with the MyCaffe.param.LogParameter. |
CMyCaffe.layers.MathLayer< T > | The MathLayer which computes various mathematical functions of the input. This layer is initialized with the MyCaffe.param.MathParameter. |
CMyCaffe.layers.PReLULayer< T > | The PReLULayer computes the "Parameterized Rectified Linear Unit" non-linearity. This layer is initialized with the MyCaffe.param.PReLUParameter. |
CMyCaffe.layers.ParameterLayer< T > | The ParameterLayer passes its blob[0] data and diff to the top[0]. |
CMyCaffe.layers.PowerLayer< T > | The PowerLayer computes the power of the input. This layer is initialized with the MyCaffe.param.PowerParameter. |
CMyCaffe.layers.ReLULayer< T > | The ReLULayer computes the "Rectifier Linear Unit" ReLULayer non-linearity, a classic for neural networks. This layer is initialized with the MyCaffe.param.ReLUParameter. |
CMyCaffe.layers.SigmoidLayer< T > | The SigmoidLayer is a neuron layer that calculates the sigmoid function, a classc choice for neural networks. This layer is initialized with the MyCaffe.param.SigmoidParameter. |
CMyCaffe.layers.SwishLayer< T > | The SwishLayer provides a novel activation function that tends to work better than ReLU. This layer is initialized with the MyCaffe.param.SwishParameter. |
CMyCaffe.layers.TanhLayer< T > | The TanhLayer is a neuron layer that calculates the tanh function, popular with auto-encoders. This layer is initialized with the MyCaffe.param.TanhParameter. |
CMyCaffe.layers.ThresholdLayer< T > | The ThresholdLayer is a neuron layer that tests whether the input exceeds a threshold: outputs 1 for inputs above threshold; 0 otherwise. This layer is initialized with the MyCaffe.param.ThresholdParameter. |
CMyCaffe.layers.beta.MishLayer< T > | The MishLayer provides a novel activation function that tends to work better than ReLU. This layer is initialized with the MyCaffe.param.MishParameter. |
CMyCaffe.layers.beta.SerfLayer< T > | The SerfLayer provides a novel activation function that tends to work better than ReLU. |
CMyCaffe.layers.gpt.GeluLayer< T > | The GeluLayer implements the New GELU activation function currently in Google BERT repo (same as OpenAI GPT) |
CMyCaffe.layers.lnn.LeCunLayer< T > | The LeCunLayer performs the LeCun's Tanh function |
CMyCaffe.layers.lnn.SiLULayer< T > | The SiLULayer implements the Sigmoid-weighted Linear Unit (SiLU) activation function |
CMyCaffe.layers.lnn.SoftPlusLayer< T > | The SoftPlusLayer implements the Softplus function, a smooth approximation of the ReLU function |
CMyCaffe.layers.nt.ScalarLayer< T > | The ScalarLayer computes the operation with the value on the input. |
CMyCaffe.layers.PoolingLayer< T > | The PoolingLayer pools the input image by taking the max, average, etc. within regions. This layer is initialized with the MyCaffe.param.PoolingParameter. |
►CMyCaffe.layers.RecurrentLayer< T > | The RecurrentLayer is an abstract class for implementing recurrent behavior inside of an unrolled newtork. This layer type cannot be instantiated – instead, you should use one of teh implementations which defines the recurrent architecture, such as RNNLayer or LSTMLayer. This layer is initialized with the MyCaffe.param.RecurrentParameter. |
CMyCaffe.layers.LSTMLayer< T > | The LSTMLayer processes sequential inputs using a 'Long Short-Term Memory' (LSTM) [1] style recurrent neural network (RNN). Implemented by unrolling the LSTM computation through time. This layer is initialized with the MyCaffe.param.RecurrentParameter. |
CMyCaffe.layers.RNNLayer< T > | The RNNLayer processes time-varying inputs using a simple recurrent neural network (RNN). Implemented as a network unrolling the RNN computation in time. This layer is initialized with the MyCaffe.param.RecurrentParameter. |
CMyCaffe.layers.ReductionLayer< T > | The ReductionLayer computes the 'reductions' – operations that return a scalar output Blob for an input Blob of arbitrary size, such as the sum, absolute sum, and sum of squares. This layer is initialized with the MyCaffe.param.ReductionParameter. |
CMyCaffe.layers.ReshapeLayer< T > | The ReshapeLayer reshapes the input Blob into an arbitrary-sized output Blob. This layer is initialized with the MyCaffe.param.ReshapeParameter. |
CMyCaffe.layers.SPPLayer< T > | The SPPLayer does spatial pyramid pooling on the input image by taking the max, average, etc. within regions so that the result vector of different sized images are of the same size. This layer is initialized with the MyCaffe.param.SPPParameter. |
CMyCaffe.layers.ScaleLayer< T > | The ScaleLayer computes the elementwise product of two input Blobs, with the shape of the latter Blob 'broadcast' to match the shape of the former. Equivalent to tiling the later Blob, then computing the elementwise product. Note: for efficiency and convienience this layer can additionally perform a 'broadcast' sum too when 'bias_term: true' This layer is initialized with the MyCaffe.param.ScaleParameter. is set. |
CMyCaffe.layers.SilenceLayer< T > | The SilenceLayer ignores bottom blobs while producing no top blobs. (This is useuful to suppress output during testing.) |
CMyCaffe.layers.SliceLayer< T > | The SliceLayer takes a blob and slices it along either the num or channel dimensions outputting multiple sliced blob results. This layer is initialized with the MyCaffe.param.SliceParameter. |
CMyCaffe.layers.SoftmaxLayer< T > | The SoftmaxLayer computes the softmax function. This layer is initialized with the MyCaffe.param.SoftmaxParameter. |
CMyCaffe.layers.SplitLayer< T > | The SplitLayer creates a 'split' path in the network by copying the bottom blob into multiple top blob's to be used by multiple consuming layers. |
CMyCaffe.layers.TileLayer< T > | The TileLayer copies a Blob along specified dimensions. This layer is initialized with the MyCaffe.param.TileParameter. |
CMyCaffe.layers.beta.AccuracyDecodeLayer< T > | The AccuracyDecodeLayer compares the labels output by the DecodeLayer with the expected labels output by the DataLayer. This layer is initialized with the MyCaffe.param.AccuracyParameter. |
CMyCaffe.layers.beta.AccuracyEncodingLayer< T > | The AccuracyEncodingLayer computes the classification accuracy for an encoding used in a classification task that uses a Siamese Network or similar type of net that creates an encoding mapped to a label. This layer is initialized with the MyCaffe.param.AccuracyParameter. |
CMyCaffe.layers.beta.ConvolutionOctaveLayer< T > | The ConvolutionOctaveLayer processes high and low frequency portions of images using convolution. |
CMyCaffe.layers.beta.DataSequenceLayer< T > | DataSequence Layer - this caches inputs by label and then outputs data item tuplets that include an 'anchor', optionally a 'positive' match, and at least one 'negative' match |
CMyCaffe.layers.beta.DecodeLayer< T > | The DecodeLayer decodes the label of a classification for an encoding produced by a Siamese Network or similar type of net that creates an encoding mapped to a set of distances where the smallest distance indicates the label for which the encoding belongs. |
CMyCaffe.layers.beta.GatherLayer< T > | The GatherLayer extracts (gathers) data from specified indices along a given axis from the input and returns it as the output. The indices are passed in as the second bottom blob. |
CMyCaffe.layers.beta.GlobResNormLayer< T > | The GRNLayer performs an L2 normalization over the input data. |
CMyCaffe.layers.beta.InterpLayer< T > | The InterpLayer changes the spatial resolution by bi-linear interpolation. |
CMyCaffe.layers.beta.KnnLayer< T > | |
CMyCaffe.layers.beta.MergeLayer< T > | The MergeLayer merges two bottom blobs with a specified copy pattern and outputs a single blob result. |
CMyCaffe.layers.beta.ModelDataLayer< T > | The ModelDataLayer loads data from RawImageResults table for an encoder/decoder type model. |
CMyCaffe.layers.beta.Normalization1Layer< T > | The Normalization1Layer performs an L2 normalization over the input data. This layer is initialized with the MyCaffe.param.Normalization1Parameter. |
CMyCaffe.layers.beta.SqueezeLayer< T > | The SqueezeLayer performs a squeeze operation where all single dimensions are removed. |
CMyCaffe.layers.beta.TextDataLayer< T > | The TextDataLayer loads data from text data files for an encoder/decoder type model. This layer is initialized with the MyCaffe.param.TextDataParameter. |
CMyCaffe.layers.beta.TransposeLayer< T > | The TransposeLayer performs a permute and transpose operation similar to numpy.transpose. |
CMyCaffe.layers.beta.UnPoolingLayer1< T > | |
CMyCaffe.layers.beta.UnPoolingLayer< T > | |
CMyCaffe.layers.beta.UnsqueezeLayer< T > | The UnsqueezeLayer performs an unsqueeze operation where a single dimension is inserted at each index specified. |
CMyCaffe.layers.gpt.CausalSelfAttentionLayer2< T > | The CausalSelfAttention provides a vanilla multi-head self-attention layer with projection at the end. |
CMyCaffe.layers.gpt.CausalSelfAttentionLayer< T > | The CausalSelfAttention provides a vanilla multi-head self-attention layer with projection at the end. |
CMyCaffe.layers.gpt.LayerNormLayer< T > | The LayerNormalizationLayer performs layer normalization similar to the PyTorch LayerNorm layer. |
CMyCaffe.layers.gpt.MultiheadAttentionLayer< T > | The MultiheadAttention provides a vanilla multi-head layer. |
CMyCaffe.layers.gpt.PositionalEncodingLayer< T > | The PositionalEncodingLayer is a neuron layer that adds positional encoding to the input. |
CMyCaffe.layers.gpt.TokenizedDataLayer< T > | The TokenizedDataLayer loads and tokenizes data for a transformer model where data is loaded in the form: data, pos, target(optional) |
CMyCaffe.layers.gpt.TokenizedDataPairsLayer< T > | The TokenizedDataPairsLayer loads and tokenizes data for a transformer model where data is loaded in the form: data, pos, target(optional) |
CMyCaffe.layers.gpt.TransformerBlockLayer< T > | The TransformerBlock provides a generic transformer block |
CMyCaffe.layers.hdf5.HDF5DataLayer< T > | The HDF5DataLayer loads data from files in the HDF5 data format. This layer is initialized with the MyCaffe.param.HDF5DataParameter. |
CMyCaffe.layers.lnn.CfcLayer< T > | The CfcLayer implements the Closed form Continuous layer. |
►CMyCaffe.layers.lnn.LnnUnitLayer< T > | The LnnUnitLayer implements the base class to the Cfc and Ltc Unit layers. |
CMyCaffe.layers.lnn.CfcUnitLayer< T > | The CfcUnitLayer implements the Closed form Continuous Cell (CfcCell) layer. |
CMyCaffe.layers.lnn.LtcUnitLayer< T > | The LtcUnitLayer implements the liquid time constant with ODE solver (LTCCell) layer. |
CMyCaffe.layers.nt.EventLayer< T > | The EventLayer provides an event that fires on the forward pass and another that fires on the backward pass. |
CMyCaffe.layers.nt.GramLayer< T > | The GramLayer computes the Gram matrix used in Neural Style. |
CMyCaffe.layers.nt.OneHotLayer< T > | The OneHotLayer is a layer for converting real values into a one-hot vector where a 1 is placed within the bucketized range for which the input value falls. |
CMyCaffe.layers.ssd.DetectionEvaluateLayer< T > | The DetectionEvaluateLayer generates the detection evaluation based on the DetectionOutputLayer and ground truth bounding box labels. |
CMyCaffe.layers.ssd.DetectionOutputLayer< T > | The DetectionOutputLayer generates the detection output based on location and confidence predictions by doing non maximum supression. Intended for use with MultiBox detection method used in SSD. |
CMyCaffe.layers.ssd.Normalization2Layer< T > | The Normalization2Layer performs normalization used by the SSD algorithm. This layer is initialized with the MyCaffe.param.Normalization2Parameter. |
CMyCaffe.layers.ssd.PermuteLayer< T > | The PermuteLayer performs permutation on the input blob by changing the memory order of the data which is used by the SSD algorithm. This layer is initialized with the MyCaffe.param.PermuteParameter. |
CMyCaffe.layers.ssd.PriorBoxLayer< T > | The PriorBoxLayer generates prior boxes of designated sizes and aspect ratios across all dimensions of which is used by the SSD algorithm. This layer is initialized with the MyCaffe.param.ssd.PriorBoxParameter. |
CMyCaffe.layers.tft.CategoricalTransformationLayer< T > | The CategoricalTransformationLayer implements the transforming/embeddings for the set of categorical input variables from a single input channel. Each input variable is projected using a dedicated embedding layer to a vector of width state_size. The result of applying this module is a list, with length num_inputs, that contians the embedding of each input variable for all observations and time steps. |
CMyCaffe.layers.tft.ChannelEmbeddingLayer< T > | The ChannelEmbeddingLayer implements the transforming/embeddings for both the numeric and categorical data of an input channel. This layer manages both a NumericTransformationLayer and CategoricalTransformationLayer |
CMyCaffe.layers.tft.DataTemporalLayer< T > | The DataTemporalLayer implements the data layer used to load the temporal data into the model. |
CMyCaffe.layers.tft.GateAddNormLayer< T > | The GateAddNormLayer implements the Dropout, Gated Linear Unit layer, LayerNorm while adding in the residual. |
CMyCaffe.layers.tft.GluLayer< T > | The GluLayer implements the Gated Linear Unit layer. |
CMyCaffe.layers.tft.GrnLayer< T > | The GrnLayer implements the Gated Linear Unit layer. |
CMyCaffe.layers.tft.MultiHeadAttentionInterpLayer< T > | The MultiHeadAttentionInterpLayer implements the Multi-head Attention Interpretive Layer |
CMyCaffe.layers.tft.NumericTransformationLayer< T > | The NumericTransformationLayer implements the transforming/embeddings for the set of numeric input variables from a single input channel. Each input variable is projected using a dedicated inner product layer to a vector of width state_size. The result of applying this module is a list, with length num_inputs, that contians the embedding of each input variable for all observations and time steps. |
CMyCaffe.layers.tft.QuantileAccuracyLayer< T > | The QuantileAccuracyLayer implements the Quantile Accuracy Layer used in TFT models. |
CMyCaffe.layers.tft.ReshapeTemporalLayer< T > | The ReshapeTemporalLayer implements the Variable Selection Network |
CMyCaffe.layers.tft.VarSetNetLayer< T > | The VarSetNetLayer implements the Variable Selection Network |
CMyCaffe.layers.hdf5.HDF5< T > | The HDF5 object provides HDF5 dataset support to the HDF5DataLayer. |
CMyCaffe.preprocessor.Extension< T > | The Extension class is used to add new pre-processor extension DLL's to MyCaffe. |
CMyCaffe.preprocessor.MgrPreprocessor< T > | The MgrPreprocessor manages the operations of the data pre-processor. |
CMyCaffe.python.PythonInterop | The PythonInterop uses PythonNet to execute Python code. |
►CMyCaffe.solvers.Solver< T > | An interface for classes that perform optimization on Nets - this class serves as the base class for all solvers. |
CMyCaffe.solvers.LBFGSSolver< T > | Optimizes the parameters of a Net using L-BFGS. This implementation is based on minFunc, by Marc Schmidt. |
►CMyCaffe.solvers.SGDSolver< T > | Stochastic Gradient Descent solver with momentum updates weights by a linear combination of the negative gradient and the previous weight update. |
CMyCaffe.solvers.AdaDeltaSolver< T > | Use AdaDelta Solver which has gradient based optimization like SGD. |
CMyCaffe.solvers.AdaGradSolver< T > | Use AdaGrad Solver based optimization like SGD that tries to find rarely seen features. |
CMyCaffe.solvers.AdamSolver< T > | Use Adam Solver which uses gradient based optimization like SGD that includes 'adaptive momentum estimation' and can be thought of as a generalization of AdaGrad. |
CMyCaffe.solvers.AdamWSolver< T > | Use AdamW Solver which uses gradient based optimization like Adam with a decoupled weight decay. |
CMyCaffe.solvers.NesterovSolver< T > | Use Nesterov's accelerated gradient Solver, which is similar to SGD, but the error gradient is computed on the weights with added momentum. |
CMyCaffe.solvers.RmsPropSolver< T > | Use RmsProp Solver which uses gradient based optimization like SGD. |
CMyCaffe.trainers.dqn.c51.st.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.trainers.dqn.c51.st.DqnAgent< T > | The DqnAgent both builds episodes from the envrionment and trains on them using the Brain. |
CMyCaffe.trainers.dqn.c51.st.TrainerC51< T > | The TrainerC51 implements the C51-DQN algorithm as described by Bellemare et al., Google Dopamine RainboAgent and 'flyyufelix' |
CMyCaffe.trainers.dqn.noisy.simple.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.trainers.dqn.noisy.simple.DqnAgent< T > | The DqnAgent both builds episodes from the envrionment and trains on them using the Brain. |
CMyCaffe.trainers.dqn.noisy.simple.TrainerNoisyDqn< T > | The TrainerNoisyDqn implements the Noisy-DQN algorithm as described by Google Dopamine DNQAgent, Gheshlagi et al. and inspired by 'higgsfield' |
CMyCaffe.trainers.dqn.noisy.st.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.trainers.dqn.noisy.st.DqnAgent< T > | The DqnAgent both builds episodes from the envrionment and trains on them using the Brain. |
CMyCaffe.trainers.dqn.noisy.st.TrainerNoisyDqn< T > | The TrainerNoisyDqn implements the Noisy-DQN algorithm as described by Google Dopamine DQNAgent, Gheshlagi et al., and inspired by 'Kyushik' and 'higgsfield' |
CMyCaffe.trainers.pg.mt.Agent< T > | The Agent both builds episodes from the envrionment and trains on them using the Brain. |
CMyCaffe.trainers.pg.mt.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.trainers.pg.mt.Optimizer< T > | The Optimizer manages a single thread used to apply updates to the primary instance of MyCaffe. Once applied, the new weights are then copied back to the worker who just applied its gradients to the primary MyCaffe. |
CMyCaffe.trainers.pg.mt.TrainerPG< T > | The TrainerPG implements a simple Policy Gradient trainer inspired by Andrej Karpathy's blog posed referenced. |
CMyCaffe.trainers.pg.simple.TrainerPG< T > | The TrainerPG implements a simple Policy Gradient trainer inspired by Andrej Karpathy's blog posed referenced. |
CMyCaffe.trainers.pg.st.TrainerPG< T > | The TrainerPG implements a simple Policy Gradient trainer inspired by Andrej Karpathy's blog posed referenced. |
CMyCaffe.trainers.rnn.simple.TrainerRNN< T > | The TrainerRNN implements a simple RNN trainer inspired by adepierre's GitHub site referenced. |
CMyCaffe.trainers.rnn.simple.TrainerRNNSimple< T > | The TrainerRNNSimple implements a very simple RNN trainer inspired by adepierre's GitHub site referenced. |
►CIEnumerable | |
CMyCaffe.basecode.AnnotationGroupCollection | Defines a collection of AnnotationGroups. |
CMyCaffe.basecode.BucketCollection | The BucketCollection contains a set of Buckets. |
CMyCaffe.basecode.GenericList< T > | The GenericList provides a base used to implement a generic list by only implementing the minimum amount of the list functionality. |
CMyCaffe.basecode.LabelMappingCollection | The LabelMappingCollection manages a collection of LabelMapping's. |
CMyCaffe.basecode.PropertySet | Specifies a key-value pair of properties. |
CMyCaffe.basecode.RawProtoCollection | The RawProtoCollection class is a list of RawProto objects. |
CMyCaffe.basecode.SimpleDatumCollection | The SimpleDatumCollection holds a named array of SimpleDatums |
CMyCaffe.basecode.descriptors.ParameterDescriptorCollection | The ParameterDescriptorCollection class contains a list of ParameterDescriptor's. |
CMyCaffe.basecode.descriptors.ValueDescriptorCollection | The ValueDescriptorCollection class contains a list of ValueDescriptor's. |
CMyCaffe.common.BlobCollection< T > | The BlobCollection contains a list of Blobs. |
CMyCaffe.db.image.DatasetExCollection | The DatasetExCollection contains a list of DatasetEx objects. |
CMyCaffe.db.image.DatasetExCollection2 | [V2 Image Database] The DatasetExCollection2 contains a list of DatasetEx2 objects. |
CMyCaffe.db.temporal.RawValueDataCollection | The RawValueDataCollection class is used to hold a collection of RawValueData items. |
CMyCaffe.extras.DeepDraw< T > | The DeepDraw class implements both deep drawing and deep dream as originally introduced by Google. |
CMyCaffe.extras.OctavesCollection | The OctavesCollection manages a list of Octaves. |
CMyCaffe.gym.GymCollection | The GymCollection contains the available Gyms. |
CMyCaffe.layers.tft.FieldCollection | The FieldCollection manages a collection of fields. |
CMyCaffe.param.BlobProtoCollection | Specifies a collection of BlobProtos. |
CMyCaffe.trainers.pg.mt.MemoryCache | Contains the best memory episodes (best by highest total rewards) |
►CMyCaffe.layers.hdf5.IHDF5Load< T > | The HDF5Load interface is used to load weights into objects like a Net. |
CMyCaffe.layers.hdf5.HDF5< T > | The HDF5 object provides HDF5 dataset support to the HDF5DataLayer. |
►CMyCaffe.ILayerCreator | The ILayerCreator interface is implemented by each MyCaffe.layers.x layer extension dll and is used to create new instances of the layers supported by each layer extension dll. |
CMyCaffe.layers.alpha.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.ssd namespace. |
CMyCaffe.layers.beta.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.ssd namespace. |
CMyCaffe.layers.gpt.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.gpt namespace. |
CMyCaffe.layers.hdf5.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.ssd namespace. |
CMyCaffe.layers.lnn.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.tft namespace. |
CMyCaffe.layers.nt.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.ssd namespace. |
CMyCaffe.layers.ssd.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.ssd namespace. |
CMyCaffe.layers.tft.LayerFactory | The LayerFactor is responsible for creating all layers implemented in the MyCaffe.layers.tft namespace. |
CMyCaffe.basecode.ImageData | The ImageData class is a helper class used to convert between Datum, other raw data, and Images such as a Bitmap. |
CMyCaffe.basecode.descriptors.ImageDescriptor | The ImageDescriptor class describes a single image in the database. |
CMyCaffe.basecode.ImageTools | The ImageTools class is a helper class used to manipulate image data. |
CMyCaffe.data.ImageTransforms< T > | The ImageTransforms class provides several useful image transformation function used with SSD. |
►CMyCaffe.trainers.common.IMemoryCollection | The IMemoryCollection interface is implemented by all memory collection types. |
CMyCaffe.trainers.common.FileMemoryCollection | The FileMemoryCollection is used during debugging to load from and save to file. |
CMyCaffe.trainers.common.PrioritizedMemoryCollection | The PrioritizedMemoryCollection provides a sampling based on prioritizations. |
CMyCaffe.trainers.common.RandomMemoryCollection | The RandomMemoryCollection is used to randomly sample the collection of items. |
►CMyCaffe.layers.gpt.InputData | The InputData is an abstract class used to get training data and tokenize input data. |
CMyCaffe.layers.gpt.CustomListData | The CustomData supports external data input via an external Assembly DLL that supports the ICustomTokenInput interface. |
CMyCaffe.layers.gpt.TextInputData | The TextInputData manages character data read in from a text file. Data is tokenized into indexes that reference each character within the vocabulary. |
CMyCaffe.layers.gpt.TextListData | The TextListData manages parallel lists of data where the first list contains the encoder input data and the second the decoder input/target data. |
►CISerializable | |
CMyCaffe.basecode.SettingsCaffe | The SettingsCaffe defines the settings used by the MyCaffe CaffeControl. |
CMyCaffe.db.temporal.ItemSet | The ItemSet manages the data for a single item (e.g., customer, station, stock symbol, etc.) and its associated streams. |
CMyCaffe.layers.beta.ModelData.IterationInfo | The IterationInfo class contains information about each iteration. |
CMyCaffe.layers.beta.TextData.IterationInfo | The IterationInfo class contains information about each iteration. |
CMyCaffe.basecode.ITestKnownFailures | Defines the ITest interface used by the Test module to return its known failures. |
►CMyCaffe.layers.gpt.IVocabulary | The IVocabulary interface specifies the interface that all Vocabularies implement. |
CMyCaffe.layers.gpt.VocabularyCharacter | The VocabularyCharacters class manages the data vocabulary of characters. |
CMyCaffe.layers.gpt.VocabularySentencePiece | The VocabularySentencePieces class manages the data vocabulary of words. |
CMyCaffe.layers.gpt.VocabularyWord | The VocabularyWords class manages the data vocabulary of words. |
►CMyCaffe.db.stream.IXCustomQuery | The custom query interface defines the functions implemented by each Custom Query object used to specifically query the tables of the underlying database. |
CMyCaffe.db.stream.StandardQueryTextFile | The StandardQueryTextFile provides queries that read text (*.txt) files residing in a given directory. |
CMyCaffe.db.stream.StandardQueryWAVFile | The StandardQueryWAVFile provides queries that read sound frequencies from (*.WAV) files residing in a given directory. |
►CMyCaffe.basecode.IXDatabaseBase | The IXDatabaseBase interface defines the general interface to the in-memory database. |
►CMyCaffe.basecode.IXImageDatabaseBase | The IXImageDatabaseBase interface defines the general interface to the in-memory image database. |
CMyCaffe.basecode.IXImageDatabase1 | The IXImageDatabase interface defines the eneral interface to the in-memory image database. |
CMyCaffe.basecode.IXImageDatabase2 | The IXImageDatabase2 interface defines the general interface to the in-memory image database (v2). |
►CMyCaffe.basecode.IXTemporalDatabaseBase | Teh IXTemporalDatabaseBase interface defines the general interface to the in-memory temporal database. |
CMyCaffe.db.temporal.MyCaffeTemporalDatabase | [Temporal Database] The MyCaffeTemporalDatabase provides an enhanced in-memory temporal database used for quick temporal data retrieval. |
►CMyCaffe.common.IXDebugData< T > | The IXDebugData interface is implemented by the DebugLayer to give access to the debug information managed by the layer. |
CMyCaffe.layers.DebugLayer< T > | The DebugLayer merely stores, up to max_stored_batches, batches of input which are then optionally used by various debug visualizers. This layer is initialized with the MyCaffe.param.DebugParameter. |
►CIXImageDatabase1 | |
CMyCaffe.db.image.MyCaffeImageDatabase | The MyCaffeImageDatabase provides an enhanced in-memory image database used for quick image retrieval. |
►CIXImageDatabase2 | |
CMyCaffe.db.image.MyCaffeImageDatabase2 | [V2 Image Database] The MyCaffeImageDatabase2 provides an enhanced in-memory image database used for quick image retrieval. |
►CMyCaffe.common.IXMyCaffe< T > | The IXMyCaffe interface contains functions used to perform MyCaffe operations that work with the MyCaffeImageDatabase. |
CMyCaffe.MyCaffeControl< T > | The MyCaffeControl is the main object used to manage all training, testing and running of the MyCaffe system. |
►CMyCaffe.trainers.IXMyCaffeCustomTrainer | The IXMyCaffeCustomTrainer interface is used by the MyCaffeCustomTraininer components that provide various training techniques such as Reinforcement Training. |
►CMyCaffe.trainers.IXMyCaffeCustomTrainerRL | The IXMyCaffeCustomTrainer interface is used by the MyCaffeCustomTraininer components that provide various training techniques such as Reinforcement Training. |
CMyCaffe.trainers.MyCaffeTrainerDual | The MyCaffeTraininerDual is used to perform both reinforcement and recurrent learning training tasks on an instance of the MyCaffeControl. |
CMyCaffe.trainers.MyCaffeTrainerRL | (Depreciated - use MyCaffeTrainerDual instead.) The MyCaffeTraininerRL is used to perform reinforcement learning training tasks on an instance of the MyCaffeControl. |
►CMyCaffe.trainers.IXMyCaffeCustomTrainerRNN | The IXMyCaffeCustomTrainer interface is used by the MyCaffeCustomTraininer components that provide various training techniques such as Reinforcement Training. |
CMyCaffe.trainers.MyCaffeTrainerDual | The MyCaffeTraininerDual is used to perform both reinforcement and recurrent learning training tasks on an instance of the MyCaffeControl. |
CMyCaffe.trainers.MyCaffeTrainerRNN | (Depreciated - use MyCaffeTrainerDual instead.) The MyCaffeTrainerRNN is used to perform recurrent neural-network training tasks on an instance of the MyCaffeControl. |
►CMyCaffe.trainers.IXMyCaffeCustomTrainerCallback | The IXMyCaffeCustomTrainerCallback interface is used to call back to the parent running the custom trainer. |
CMyCaffe.trainers.IXMyCaffeCustomTrainerCallbackRNN | The IXMyCaffeCustomTrainerCallbackRNN interface is used to call back to the parent running the custom RNN trainer. |
►CMyCaffe.common.IXMyCaffeExtension< T > | The IXMyCaffeExtension interface allows for easy extension management of the low-level software that interacts directly with CUDA. |
CMyCaffe.MyCaffeControl< T > | The MyCaffeControl is the main object used to manage all training, testing and running of the MyCaffe system. |
►CMyCaffe.gym.IXMyCaffeGym | The IXMyCaffeGym interface is used to interact with each Gym. |
CMyCaffe.gym.AtariGym | The Atari Gym provides acess to the Atari-2600 Emulator from Stella (https://github.com/stella-emu/stella) via a slightly modified version of the Arcade-Learning-Envrionment (ALE) from mgbellemare (https://github.com/mgbellemare/Arcade-Learning-Environment). |
CMyCaffe.gym.CartPoleGym | The CartPole Gym provides a simulation of a cart with a balancing pole standing on top of it. |
CMyCaffe.gym.CurveGym | The Curve Gym provides a simulation of continuous curve such as Sin or Cos. |
►CMyCaffe.gym.IXMyCaffeGymData | The IXMyCaffeGym interface is used to interact with each Gym. |
CMyCaffe.gym.DataGeneralGym | The DataGeneral Gym provides access to the MyCaffe Streaming Database with GENERAL query types. |
CMyCaffe.gym.ModelGym | The Model Gym runs a given Project over the dataset specified within the project where each step advanced to another data item within the project's dataset. |
CMyCaffe.gym.IXMyCaffeGymRange | The IXMyCaffeGymRange interface is used to query the data range for the vocabulary. |
►CMyCaffe.gym.IXMyCaffeGymUiCallback | The IXMyCaffeGymUiCallback is used to interact with the user of the IXMyCaffeGymUiService interface. |
CMyCaffe.gym.python.MyCaffePythonGym | The MyCaffePythonGym class provides a simple interface that can easily be used from within Python. |
►CMyCaffe.gym.IXMyCaffeGymUiService | The IXMYCaffeGymUiService interface provides access to the MyCaffeGymUiService used to display the visualizations of each Gym as they run. |
CMyCaffe.gym.MyCaffeGymUiService | The MyCaffeGymUiService provides the service used to show the Gym visualizations. |
►CMyCaffe.common.IXMyCaffeNoDb< T > | The IXMyCaffeNoDb interface contains functions used to perform MyCaffe operations that run in a light-weight manner without the MyCaffeImageDatabase. |
CMyCaffe.MyCaffeControl< T > | The MyCaffeControl is the main object used to manage all training, testing and running of the MyCaffe system. |
►CMyCaffe.preprocessor.IXMyCaffePreprocessor< T > | The IXPreprocessor interface is used to query pre-processed data from a streaming database. |
CMyCaffe.preprocessor.MyCaffeDataPreprocessor< T > | The MyCaffeDataPreprocessor handles adding data from a streaming database to the GPU and then pre-processing the data once on the GPU making it ready for use with the Data Gym. |
►CMyCaffe.common.IXMyCaffeState< T > | The IXMyCaffeState interface contains functions related to the MyCaffeComponent state. |
CMyCaffe.MyCaffeControl< T > | The MyCaffeControl is the main object used to manage all training, testing and running of the MyCaffe system. |
►CMyCaffe.common.IXPersist< T > | The IXPersist interface is used by the CaffeControl to load and save weights. |
CMyCaffe.common.PersistCaffe< T > | The PersistCaffe class is used to load and save weight files in the .caffemodel format. |
►CMyCaffe.db.stream.IXStreamDatabase | The IXStreamDatabase interface is the main interface to the MyCaffe Streaing Database. |
CMyCaffe.db.stream.MyCaffeStreamDatabase | The MyCaffeStreamDatabase provides a streaming data input source to MyCaffe gyms used as input for dynamic, reinforcement learning. |
►CMyCaffe.trainers.IxTrainer | The IxTrainer interface is implemented by each Trainer. |
►CMyCaffe.trainers.IxTrainerRL | The IxTrainerRL interface is implemented by each RL Trainer. |
CMyCaffe.trainers.dqn.c51.st.TrainerC51< T > | The TrainerC51 implements the C51-DQN algorithm as described by Bellemare et al., Google Dopamine RainboAgent and 'flyyufelix' |
CMyCaffe.trainers.dqn.noisy.simple.TrainerNoisyDqn< T > | The TrainerNoisyDqn implements the Noisy-DQN algorithm as described by Google Dopamine DNQAgent, Gheshlagi et al. and inspired by 'higgsfield' |
CMyCaffe.trainers.dqn.noisy.st.TrainerNoisyDqn< T > | The TrainerNoisyDqn implements the Noisy-DQN algorithm as described by Google Dopamine DQNAgent, Gheshlagi et al., and inspired by 'Kyushik' and 'higgsfield' |
CMyCaffe.trainers.pg.mt.TrainerPG< T > | The TrainerPG implements a simple Policy Gradient trainer inspired by Andrej Karpathy's blog posed referenced. |
CMyCaffe.trainers.pg.simple.TrainerPG< T > | The TrainerPG implements a simple Policy Gradient trainer inspired by Andrej Karpathy's blog posed referenced. |
CMyCaffe.trainers.pg.st.TrainerPG< T > | The TrainerPG implements a simple Policy Gradient trainer inspired by Andrej Karpathy's blog posed referenced. |
►CMyCaffe.trainers.IxTrainerRNN | The IxTrainerRL interface is implemented by each RL Trainer. |
CMyCaffe.trainers.rnn.simple.TrainerRNN< T > | The TrainerRNN implements a simple RNN trainer inspired by adepierre's GitHub site referenced. |
CMyCaffe.trainers.rnn.simple.TrainerRNNSimple< T > | The TrainerRNNSimple implements a very simple RNN trainer inspired by adepierre's GitHub site referenced. |
►CMyCaffe.trainers.IxTrainerCallback | The IxTrainerCallback provides functions used by each trainer to 'call-back' to the parent for information and updates. |
►CMyCaffe.trainers.IxTrainerCallbackRNN | The IxTrainerCallbackRNN provides functions used by each trainer to 'call-back' to the parent for information and updates. |
CMyCaffe.trainers.MyCaffeTrainerDual | The MyCaffeTraininerDual is used to perform both reinforcement and recurrent learning training tasks on an instance of the MyCaffeControl. |
CMyCaffe.trainers.MyCaffeTrainerRNN | (Depreciated - use MyCaffeTrainerDual instead.) The MyCaffeTrainerRNN is used to perform recurrent neural-network training tasks on an instance of the MyCaffeControl. |
CMyCaffe.trainers.MyCaffeTrainerRL | (Depreciated - use MyCaffeTrainerDual instead.) The MyCaffeTraininerRL is used to perform reinforcement learning training tasks on an instance of the MyCaffeControl. |
►CMyCaffe.trainers.IxTrainerGetDataCallback | The IxTrainerGetDataCallback interface is called right after rendering the output image and just before sending it to the display, thus giving the implementor a chance to 'overlay' information onto the image. |
CMyCaffe.trainers.dqn.c51.st.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.trainers.dqn.noisy.simple.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.trainers.dqn.noisy.st.Brain< T > | The Brain uses the instance of MyCaffe (e.g. the open project) to run new actions and train the network. |
CMyCaffe.basecode.LabelBBox | The LabelBBox manages a bounding box used in SSD. |
CMyCaffe.db.image.LabelBoostDescriptor | The LabelBoostDescriptor class describes a label boost. |
CMyCaffe.basecode.descriptors.LabelDescriptor | The LabelDescriptor class describes a single label. |
CMyCaffe.param.ssd.LabelMap | Specifies the LabelMap used with SSD. |
CMyCaffe.param.ssd.LabelMapItem | The LabelMapItem class stores the information for a single label. |
CMyCaffe.basecode.LabelMapping | The LabelMapping class represents a single label mapping. |
CMyCaffe.common.LayerDebugInformation< T > | The LayerDebugInformation describes debug information relating to a given Layer in the Net. |
CMyCaffe.basecode.LockBitmap | The LockBitmap class provides very efficient SetPixel and GetPixel functionality of a bitmap by using LockBits to directly access the bitmap data. |
CMyCaffe.basecode.Log | The Log class provides general output in text form. |
CMyCaffe.layers.tft.Lookup | The Lookup class is used to manage a single lookup table. |
CMyCaffe.layers.tft.LookupCollection | The LookupCollection class contains a collection of Lookup objects. |
CMyCaffe.layers.tft.LookupItem | The lookup item manages a single lookup item used to map a name to an ID. |
CMyCaffe.trainers.pg.mt.Memory | Specifies a single Memory (e.g. an episode). |
CMyCaffe.trainers.common.MemoryCollection | The memory collection stores a set of memory items. |
CMyCaffe.trainers.common.MemoryCollectionFactory | The MemoryCollectionFactory is used to create various memory collection types. |
CMyCaffe.trainers.common.MemoryItem | The MemoryItem stores the information about a given cycle. |
CMyCaffe.trainers.pg.mt.MemoryItem | The MemoryItem stores the information for one step in an episode. |
CMyCaffe.db.stream.MgrQueryGeneral | The MgrQueryTime class manages the collection of data queries, and the internal data queue that contains all synchronized data items from the data queries, all fused together. |
CMyCaffe.db.stream.MgrQueryTime | The MgrQueryTime class manages the collection of data queries, and the internal data queue that contains all synchronized data items from the data queries, all fused together. |
CMyCaffe.data.MnistDataLoader | The MnistDataLoader is used to create the MNIST dataset and load it into the database managed by the MyCaffe Image Database. |
CMyCaffe.data.MnistDataLoaderLite | The MnistDataLoader is used to extrac the MNIST dataset to disk and load the data into the training proces. |
CMyCaffe.data.MnistDataParameters | Contains the dataset parameters used to create the MNIST dataset. |
►CMyCaffe.model.ModelBuilder | The ModelBuilder is an abstract class that is overridden by a base class used to programically build new models. |
CMyCaffe.model.ResNetModelBuilder | The ResNetModelBuilder adds the extra layers to a 'base' model for the ResNet model. |
CMyCaffe.model.ResNetOctConvModelBuilder | The ResNetOctConvModelBuilder is used to build Octave Convolution based RESNET models. |
CMyCaffe.model.SsdPascalModelBuilder | The SsdPascalModelBuilder adds the extra layers to a 'base' model for the Pascal model used with SSD. |
CMyCaffe.model.MultiBoxHeadInfo | The MultiBoxHeadInfo contains information used to build the multi-box head of layers. |
CMyCaffe.basecode.MyCaffeModelData | The MyCaffeModelData object contains the model descriptor, model weights and optionally the image mean. |
CMyCaffe.basecode.NormalizedBBox | The NormalizedBBox manages a bounding box used in SSD. |
CMyCaffe.gym.Observation | The Observation contains data describing the Gym as it runs. |
►CMyCaffe.param.OptionalParameter | The OptionalParameter is the base class for parameters that are optional such as the MaskParameter, DistorationParameter, ExpansionParameter, NoiseParameter, and ResizeParameter. |
CMyCaffe.param.DataLabelMappingParameter | Specifies the parameters for the DataLabelMappingParameter used to map labels by the DataTransformer.TransformLabel when active. |
CMyCaffe.param.MaskParameter | Specifies the parameters for the MaskParameter used to mask portions of the transformed data when active. |
CMyCaffe.param.ssd.DistortionParameter | Specifies the parameters for the DistortionParameter used with SSD. |
CMyCaffe.param.ssd.EmitConstraint | Specifies the parameters for the EmitConstraint used with SSD. |
CMyCaffe.param.ssd.ExpansionParameter | Specifies the parameters for the ExpansionParameter used with SSD. |
CMyCaffe.param.ssd.NoiseParameter | Specifies the parameters for the NoiseParameter used with SSD. |
CMyCaffe.param.ssd.NonMaximumSuppressionParameter | Specifies the parameters for the NonMaximumSuppressionParameter used with SSD. |
CMyCaffe.param.ssd.ResizeParameter | Specifies the parameters for the ResizeParameter for use with SSD. |
CMyCaffe.param.ssd.SaltPepperParameter | Specifies the parameters for the SaltPepperParameter used with SSD. |
CMyCaffe.param.ssd.SaveOutputParameter | Specifies the parameters for the SaveOutputLayer. |
CMyCaffe.basecode.descriptors.OrderedValueStreamDescriptorSet | The ordered value stream descriptor set is used to order the value stream descriptors by class and value type. |
CMyCaffe.db.image.ParameterData | The ParameterData class is used to save and retrieve parameter data. |
CMyCaffe.basecode.descriptors.ParameterDescriptor | The ParameterDescriptor class describes a parameter in the database. |
CMyCaffe.db.stream.ParamPacker | The ParamPacker is use to pack and unpack parameters sent to each custom query. |
►CMyCaffe.common.Params< T > | The Params contains the base parameters used in multi-GPU training. |
CMyCaffe.common.GPUParams< T > | The GPUParams contains the connection to the low-level Cuda, and the stream associated with this instance. |
CMyCaffe.data.ProgressInfo | The ProgressInfo is used when reporting the overall progress of creating a dataset. |
CMyCaffe.basecode.ProjectEx | The ProjectEx class manages a project containing the solver description, model description, data set (with training data source and testing data source) and project results. |
CMyCaffe.common.Property | The Property class stores both a numeric and text value. |
CMyCaffe.common.PropertyTree | The PropertyTree class implements a simple property tree similar to the ptree in Boost. |
►CPython.Runtime.PyClrTypeBase | The PyClrTypeBase is the base class for other types. |
CPython.Runtime.BooleanType | The BooleanType represents a clr bool type. |
CPython.Runtime.DoubleType | The DoubleType represents a clr double type. |
CPython.Runtime.FloatType | The FloatType represents a clr float type. |
CPython.Runtime.Int32Type | The Int32Type represents a clr int type. |
CPython.Runtime.Int64Type | The Int64Type represents a clr long type. |
CPython.Runtime.ObjectType< T > | Convert between Python object and clr object |
CPython.Runtime.PyClrType | The PyClrType class defines a Python clr type. |
CPython.Runtime.PyDictType< K, V > | Specifies a PyDictionType dictionary. |
CPython.Runtime.PyListType< T > | Defines a PyListType of type 'T' |
CPython.Runtime.StringType | The StringType represents a clr string type. |
CPython.Runtime.PyConverter | use PyConverter to convert between python object and clr object. |
►CRandomNumberGenerator | |
CMyCaffe.basecode.CryptoRandom | The CryptoRandom is a random number generator that can use either the standard .Net Random objec or the more precise RandomNumberGenerator defined within the System.Security.Cryptograph. |
►CMyCaffe.layers.tft.RawData< T > | The RawData class is the base class for all raw data types. |
CMyCaffe.layers.tft.RawFileData< T > | The RawFileData object is used to load raw NPY file data. |
CMyCaffe.layers.tft.RawSqlData< T > | The RawSqlData class loads data from a database. |
CMyCaffe.basecode.RawProto | The RawProto class is used to parse and output Google prototxt file data. |
CMyCaffe.basecode.RawProtoFile | The RawProtoFile class writes and reads prototxt to and from a file. |
CMyCaffe.db.temporal.RawValueData | The RawValueData class contains a single raw value item. |
CMyCaffe.db.temporal.RawValueSet | The RawValueData class is used to hold the data values for an ItemID. |
CMyCaffe.basecode.Result | The Result class contains a single result. |
CMyCaffe.common.ResultCollection | The ResultCollection contains the result of a given CaffeControl::Run. |
►CMyCaffe.trainers.common.SegmentTree | Segment tree data structure |
CMyCaffe.trainers.common.MinSegmentTree | The MinSegmentTree performs a reduction over the array and returns the minimum value. |
CMyCaffe.trainers.common.SumSegmentTree | The SumSegmentTree provides a sum reduction of the items within the array. |
►CServiceHost | |
CMyCaffe.gym.MyCaffeGymUiServiceHost | The MyCaffeGymUiServiceHost provides the hosting service that listens for users of the user interface service. |
►CMyCaffe.basecode.SimpleDatum | The SimpleDatum class holds a data input within host memory. |
CMyCaffe.basecode.Datum | The Datum class is a simple wrapper to the SimpleDatum class to ensure compatibility with the original C++ Caffe code. |
CMyCaffe.basecode.SimpleDictionary | The SimpleDictionary is a dictionary used to store a set of key/value pairs, primarily as the DICTIONARY Data Criteria type. |
CMyCaffe.basecode.SimpleResult | The SimpleResult class holds the result data stored in the RawImageResults table. |
CMyCaffe.basecode.SimpleTemporalDatum | The SimpleTemporalDatum is used to return temporal data |
CMyCaffe.basecode.SimpleTemporalDatumCollection | The SimpleTemporalDatumCollection manages a collection of SimpleTemporalDatum objects. |
CMyCaffe.common.SolverInfo< T > | The SolverInfo defines the user supplied arguments passed to each Worker. |
CMyCaffe.param.SolverState | The SolverState specifies the state of a given solver. |
CMyCaffe.gym.State | The State class defines an abstract base class for the state information and gym data. |
CMyCaffe.trainers.StateBase | The StateBase is the base class for the state of each observation - this is defined by actual trainer that overrides the MyCaffeCustomTrainer. |
CMyCaffe.basecode.TarFile | The TarFile functions are used to expand tar files. |
CMyCaffe.basecode.descriptors.TemporalDescriptor | The TemporalDescriptor is used to describe a temporal aspects of the data source. |
CMyCaffe.common.TransferInput | The TransferInput class is used to transfer get and set input data.
|
►CTypeConverter | |
CMyCaffe.param.ui.CsvConverter | The CsvConverter is used to display string lists on a single line in a property grid. |
►CUITypeEditor | |
CMyCaffe.param.ui.DictionaryParamEditor | The DictionaryParamEditor is used to visually edit dictionary based parameters that are stored as a key/value set packed within a string. |
►CUserControl | |
CMyCaffe.gym.MyCaffeGymControl | The MyCaffeGymControl displays the actual Gym visualizations. |
CMyCaffe.basecode.Utility | The Utility class provides general utility funtions. |
CMyCaffe.basecode.descriptors.ValueItemDescriptor | The ValueItemDescriptor describes each value item (e.g., customer, station or stock) |
CMyCaffe.basecode.Valuemap | The Realmap operates similar to a bitmap but is actually just an array of doubles. |
CMyCaffe.basecode.descriptors.ValueStreamDescriptor | The value stream descriptor describes a single value stream within a value item. |
CMyCaffe.layers.beta.TextData.Vocabulary | The Vocabulary object manages the overall word dictionary and word to index and index to word mappings. |
CMyCaffe.data.VOCDataLoader | The VOCDataLoader is used to create the VOC0712 (VOC2007 and VOC2012) dataset and load it into the database managed by the MyCaffe Image Database. |
CMyCaffe.data.VOCDataParameters | Contains the dataset parameters used to create the VOC0712 dataset. |
CMyCaffe.db.stream.WaveFormat | The WaveFormat structure describes the header information of a WAV file. |
CMyCaffe.db.stream.WaveFormatExtensible | The WaveFormatExtensible structure describes the extended set of information of a WAV file. |
CMyCaffe.db.stream.WAVProcessor | The WAVProcessor is used to process WAV files and perform tasks such as downsampling. |
CMyCaffe.common.WeightInfo< T > | The WeightInfo class describes the weights of a given weight set including the blob names and sizes of the weights. |
►CMyCaffe.trainers.pg.mt.Worker | The Worker class provides the base class for both the Environment and Optimizer and provides the basic threading functionality used by both. |
CMyCaffe.trainers.pg.mt.Agent< T > | The Agent both builds episodes from the envrionment and trains on them using the Brain. |
CMyCaffe.trainers.pg.mt.Optimizer< T > | The Optimizer manages a single thread used to apply updates to the primary instance of MyCaffe. Once applied, the new weights are then copied back to the worker who just applied its gradients to the primary MyCaffe. |
CMyCaffe.trainers.pg.mt.WorkerStartArgs | The WorkerStartArgs provides the arguments used when starting the agent thread. |