MyCaffe
1.12.2.41
Deep learning software for Windows C# programmers.
|
Fills a Blob with coefficients for bilinear interpolation. More...
Public Member Functions | |
BilinearFiller (CudaDnn< T > cuda, Log log, FillerParameter p) | |
Constructor. More... | |
override void | Fill (int nCount, long hMem, int nNumAxes=1, int nNumOutputs=1, int nNumChannels=1, int nHeight=1, int nWidth=1) |
Fill a memory with bilinear values. More... | |
Public Member Functions inherited from MyCaffe.fillers.Filler< T > | |
Filler (CudaDnn< T > cuda, Log log, FillerParameter p) | |
Constructor. More... | |
void | Fill (Blob< T > b) |
Fill the blob with values based on the actual filler used. More... | |
Additional Inherited Members | |
Static Public Member Functions inherited from MyCaffe.fillers.Filler< T > | |
static Filler< T > | Create (CudaDnn< T > cuda, Log log, FillerParameter p) |
Create a new Filler instance. More... | |
Protected Attributes inherited from MyCaffe.fillers.Filler< T > | |
CudaDnn< T > | m_cuda |
Specifies the CudaDnn instance used to communicate to the low-level Cuda Dnn DLL. More... | |
Log | m_log |
Specifies the output log. More... | |
FillerParameter | m_param |
Specifies the filler parameters. More... | |
Fills a Blob with coefficients for bilinear interpolation.
A common use case is with the DeconvolutionLayer acting as unsampling. You can upsample a feature amp with shape of (B, C, H, W) by any integer factor using the following proto:
Please use this by replacing '{{}}' with your values. By specifying 'num_output: {{C}} group: {{C}}', it behaves as channel-wise convolution. The filter shape of this deconvolution layer will be (C, 1, K, K) where K is 'kernel_size', and this filler will set a (K, K) interpolation kernel for every channel of the filter identically. The resulting shape of the top featur emap will be (B, C, factor * H, factory * W).
Note, that the learning rate and the weight decay are set to 0 in order to keep coefficient values of bilinear interpolation uncahnged during training. If you apply this to an image, this operation is equivalent to the following call in Python with Scikit.Image:
T | The base type float or double. |
Definition at line 50 of file BilinearFiller.cs.
MyCaffe.fillers.BilinearFiller< T >.BilinearFiller | ( | CudaDnn< T > | cuda, |
Log | log, | ||
FillerParameter | p | ||
) |
Constructor.
cuda | Instance of CudaDnn - connection to cuda. |
log | Log used for output. |
p | Filler parameter that defines the filler settings. |
Definition at line 58 of file BilinearFiller.cs.
|
virtual |
Fill a memory with bilinear values.
nCount | Specifies the number of items to fill. |
hMem | Specifies the handle to GPU memory to fill. |
nNumAxes | Optionally, specifies the number of axes (default = 1). |
nNumOutputs | Optionally, specifies the number of outputs (default = 1). |
nNumChannels | Optionally, specifies the number of channels (default = 1). |
nHeight | Optionally, specifies the height (default = 1). |
nWidth | Optionally, specifies the width (default = 1). |
Implements MyCaffe.fillers.Filler< T >.
Definition at line 73 of file BilinearFiller.cs.