MyCaffe
1.12.2.41
Deep learning software for Windows C# programmers.
|
Specifies the parameters for the ContrastiveLossLayer. More...
Public Types | |
enum | DISTANCE_CALCULATION { EUCLIDEAN , MANHATTAN } |
Defines the distance calculation to use. More... | |
enum | CENTROID_LEARNING { NONE , MATCHING , NONMATCHING , ALL } |
Defines the type of centroid learning to use. More... | |
Public Types inherited from MyCaffe.param.LayerParameterBase | |
enum | LABEL_TYPE { NONE , SINGLE , MULTIPLE , ONLY_ONE } |
Defines the label type. More... | |
Public Member Functions | |
ContrastiveLossParameter () | |
Constructor for the parameter. More... | |
override object | Load (System.IO.BinaryReader br, bool bNewInstance=true) |
Load the parameter from a binary reader. More... | |
override void | Copy (LayerParameterBase src) |
Copy on parameter to another. More... | |
override LayerParameterBase | Clone () |
Creates a new copy of this instance of the parameter. More... | |
override RawProto | ToProto (string strName) |
Convert the parameter into a RawProto. More... | |
Public Member Functions inherited from MyCaffe.param.LayerParameterBase | |
LayerParameterBase () | |
Constructor for the parameter. More... | |
virtual string | PrepareRunModelInputs () |
This method gives derivative classes a chance specify model inputs required by the run model. More... | |
virtual void | PrepareRunModel (LayerParameter p) |
This method gives derivative classes a chance to prepare the layer for a run-model. More... | |
void | Save (BinaryWriter bw) |
Save this parameter to a binary writer. More... | |
abstract object | Load (BinaryReader br, bool bNewInstance=true) |
Load the parameter from a binary reader. More... | |
Public Member Functions inherited from MyCaffe.basecode.BaseParameter | |
BaseParameter () | |
Constructor for the parameter. More... | |
virtual bool | Compare (BaseParameter p) |
Compare this parameter to another parameter. More... | |
Static Public Member Functions | |
static ContrastiveLossParameter | FromProto (RawProto rp) |
Parses the parameter from a RawProto. More... | |
Static Public Member Functions inherited from MyCaffe.basecode.BaseParameter | |
static double | ParseDouble (string strVal) |
Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More... | |
static bool | TryParse (string strVal, out double df) |
Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More... | |
static float | ParseFloat (string strVal) |
Parse float values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More... | |
static bool | TryParse (string strVal, out float f) |
Parse doufloatble values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More... | |
Properties | |
double | margin [getset] |
Margin for dissimilar pair. More... | |
bool | legacy_version [getset] |
The first implementation of this cost did not exactly match the cost of Hadsell et al 2006 – using (margin - d^2) instead of (margin - d)^2. More... | |
bool | output_matches [getset] |
Optionally, specifies to output match information (default = false). More... | |
CENTROID_LEARNING | centroid_learning [getset] |
Optionally, specifies to use centroid learning as soon as the centroids (from the DecodeLayer) are ready - e.g. they have an asum > 0 (default = false, meaning no centroid learning occurs). More... | |
DISTANCE_CALCULATION | distance_calculation [getset] |
Optionally, specifies the distance calculation to use when calculating the distance between encoding pairs (default = EUCLIDEAN). More... | |
double | matching_distance_scale [getset] |
Optionally, specifies the scale applied to the matching distance when calculating the loss (default = 1.0, which ignores the scaling). More... | |
Specifies the parameters for the ContrastiveLossLayer.
Definition at line 26 of file ContrastiveLossParameter.cs.
Defines the type of centroid learning to use.
Definition at line 56 of file ContrastiveLossParameter.cs.
Defines the distance calculation to use.
Enumerator | |
---|---|
EUCLIDEAN | Specifies to use the Euclidean Distance (default). |
MANHATTAN | Specifies to use the Manhattan Distance. |
Definition at line 41 of file ContrastiveLossParameter.cs.
MyCaffe.param.ContrastiveLossParameter.ContrastiveLossParameter | ( | ) |
Constructor for the parameter.
Definition at line 77 of file ContrastiveLossParameter.cs.
|
virtual |
Creates a new copy of this instance of the parameter.
Implements MyCaffe.param.LayerParameterBase.
Definition at line 174 of file ContrastiveLossParameter.cs.
|
virtual |
Copy on parameter to another.
src | Specifies the parameter to copy. |
Implements MyCaffe.param.LayerParameterBase.
Definition at line 162 of file ContrastiveLossParameter.cs.
|
static |
Parses the parameter from a RawProto.
rp | Specifies the RawProto to parse. |
Definition at line 213 of file ContrastiveLossParameter.cs.
override object MyCaffe.param.ContrastiveLossParameter.Load | ( | System.IO.BinaryReader | br, |
bool | bNewInstance = true |
||
) |
Load the parameter from a binary reader.
br | Specifies the binary reader. |
bNewInstance | When true a new instance is created (the default), otherwise the existing instance is loaded from the binary reader. |
Definition at line 150 of file ContrastiveLossParameter.cs.
|
virtual |
Convert the parameter into a RawProto.
strName | Specifies the name to associate with the RawProto. |
Implements MyCaffe.basecode.BaseParameter.
Definition at line 186 of file ContrastiveLossParameter.cs.
|
getset |
Optionally, specifies to use centroid learning as soon as the centroids (from the DecodeLayer) are ready - e.g. they have an asum > 0 (default = false, meaning no centroid learning occurs).
Definition at line 123 of file ContrastiveLossParameter.cs.
|
getset |
Optionally, specifies the distance calculation to use when calculating the distance between encoding pairs (default = EUCLIDEAN).
Definition at line 133 of file ContrastiveLossParameter.cs.
|
getset |
The first implementation of this cost did not exactly match the cost of Hadsell et al 2006 – using (margin - d^2) instead of (margin - d)^2.
legacy_version = false (the default) uses (margin - d)^2 as proposed in the Hadsell paper. New models should probably use this version.
legacy_version = true uses (margin - d^2). This is kept to support / repoduce existing models and results.
Definition at line 103 of file ContrastiveLossParameter.cs.
|
getset |
Margin for dissimilar pair.
Definition at line 85 of file ContrastiveLossParameter.cs.
|
getset |
Optionally, specifies the scale applied to the matching distance when calculating the loss (default = 1.0, which ignores the scaling).
Definition at line 143 of file ContrastiveLossParameter.cs.
|
getset |
Optionally, specifies to output match information (default = false).
Definition at line 113 of file ContrastiveLossParameter.cs.