MyCaffe  1.12.2.41
Deep learning software for Windows C# programmers.
MyCaffe.param.LRNParameter Class Reference

Specifies the parameter for the LRNLayer. More...

Inheritance diagram for MyCaffe.param.LRNParameter:
MyCaffe.param.EngineParameter MyCaffe.param.LayerParameterBase MyCaffe.basecode.BaseParameter MyCaffe.basecode.IBinaryPersist

Public Types

enum  NormRegion { ACROSS_CHANNELS = 0 , WITHIN_CHANNEL = 1 }
 Defines the normalization region. More...
 
- Public Types inherited from MyCaffe.param.EngineParameter
enum  Engine { DEFAULT = 0 , CAFFE = 1 , CUDNN = 2 }
 Defines the type of engine to use. More...
 
- Public Types inherited from MyCaffe.param.LayerParameterBase
enum  LABEL_TYPE { NONE , SINGLE , MULTIPLE , ONLY_ONE }
 Defines the label type. More...
 

Public Member Functions

 LRNParameter ()
 Constructor for the parameter. More...
 
string useCaffeReason ()
 Returns the reason that Caffe version was used instead of NVIDIA's cuDnn. More...
 
bool useCudnn ()
 Queries whether or not to use NVIDIA's cuDnn. More...
 
override object Load (System.IO.BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
override void Copy (LayerParameterBase src)
 Copy on parameter to another. More...
 
override LayerParameterBase Clone ()
 Creates a new copy of this instance of the parameter. More...
 
override RawProto ToProto (string strName)
 Convert the parameter into a RawProto. More...
 
- Public Member Functions inherited from MyCaffe.param.EngineParameter
 EngineParameter ()
 Constructor for the parameter. More...
 
override object Load (System.IO.BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
- Public Member Functions inherited from MyCaffe.param.LayerParameterBase
 LayerParameterBase ()
 Constructor for the parameter. More...
 
virtual string PrepareRunModelInputs ()
 This method gives derivative classes a chance specify model inputs required by the run model. More...
 
virtual void PrepareRunModel (LayerParameter p)
 This method gives derivative classes a chance to prepare the layer for a run-model. More...
 
void Save (BinaryWriter bw)
 Save this parameter to a binary writer. More...
 
abstract object Load (BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
- Public Member Functions inherited from MyCaffe.basecode.BaseParameter
 BaseParameter ()
 Constructor for the parameter. More...
 
virtual bool Compare (BaseParameter p)
 Compare this parameter to another parameter. More...
 

Static Public Member Functions

static new LRNParameter FromProto (RawProto rp)
 Parses the parameter from a RawProto. More...
 
- Static Public Member Functions inherited from MyCaffe.param.EngineParameter
static EngineParameter FromProto (RawProto rp)
 Parses the parameter from a RawProto. More...
 
- Static Public Member Functions inherited from MyCaffe.basecode.BaseParameter
static double ParseDouble (string strVal)
 Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static bool TryParse (string strVal, out double df)
 Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static float ParseFloat (string strVal)
 Parse float values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static bool TryParse (string strVal, out float f)
 Parse doufloatble values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 

Properties

uint local_size [getset]
 Specifies the local size of the normalization window width. More...
 
double alpha [getset]
 Specifies the alpha value used for variance scaling in the normalization formula. NOTE: cuDNN uses a default of alpha = 1e-4, whereas Caffe uses a default of alpha = 1.0 More...
 
double beta [getset]
 Specifies the beta value used as the power parameter in the normalization formula. NOTE: both cuDNN and Caffe use a default of beta = 0.75 More...
 
NormRegion norm_region [getset]
 Specifies the region over which to normalize. More...
 
double k [getset]
 Specifies the k value used by the normalization parameter. NOTE: cuDNN uses a default of k = 2.0, whereas Caffe uses a default of k = 1.0. More...
 
- Properties inherited from MyCaffe.param.EngineParameter
Engine engine [getset]
 Specifies the Engine in use. More...
 

Detailed Description

Specifies the parameter for the LRNLayer.

See also
Improving neural networks by preventing co-adaptation of feature detectors by Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov, 2012.
Layer Normalization by Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton, 2016.

Definition at line 19 of file LRNParameter.cs.

Member Enumeration Documentation

◆ NormRegion

Defines the normalization region.

Enumerator
ACROSS_CHANNELS 

Normalize across channels.

WITHIN_CHANNEL 

Normalize within channels.

Definition at line 30 of file LRNParameter.cs.

Constructor & Destructor Documentation

◆ LRNParameter()

MyCaffe.param.LRNParameter.LRNParameter ( )

Constructor for the parameter.

Definition at line 43 of file LRNParameter.cs.

Member Function Documentation

◆ Clone()

override LayerParameterBase MyCaffe.param.LRNParameter.Clone ( )
virtual

Creates a new copy of this instance of the parameter.

Returns
A new instance of this parameter is returned.

Reimplemented from MyCaffe.param.EngineParameter.

Definition at line 155 of file LRNParameter.cs.

◆ Copy()

override void MyCaffe.param.LRNParameter.Copy ( LayerParameterBase  src)
virtual

Copy on parameter to another.

Parameters
srcSpecifies the parameter to copy.

Reimplemented from MyCaffe.param.EngineParameter.

Definition at line 139 of file LRNParameter.cs.

◆ FromProto()

static new LRNParameter MyCaffe.param.LRNParameter.FromProto ( RawProto  rp)
static

Parses the parameter from a RawProto.

Parameters
rpSpecifies the RawProto to parse.
Returns
A new instance of the parameter is returned.

Definition at line 183 of file LRNParameter.cs.

◆ Load()

override object MyCaffe.param.LRNParameter.Load ( System.IO.BinaryReader  br,
bool  bNewInstance = true 
)

Load the parameter from a binary reader.

Parameters
brSpecifies the binary reader.
bNewInstanceWhen true a new instance is created (the default), otherwise the existing instance is loaded from the binary reader.
Returns
Returns an instance of the parameter.

Definition at line 127 of file LRNParameter.cs.

◆ ToProto()

override RawProto MyCaffe.param.LRNParameter.ToProto ( string  strName)
virtual

Convert the parameter into a RawProto.

Parameters
strNameSpecifies the name to associate with the RawProto.
Returns
The new RawProto is returned.

Reimplemented from MyCaffe.param.EngineParameter.

Definition at line 163 of file LRNParameter.cs.

◆ useCaffeReason()

string MyCaffe.param.LRNParameter.useCaffeReason ( )

Returns the reason that Caffe version was used instead of NVIDIA's cuDnn.

Returns

Definition at line 52 of file LRNParameter.cs.

◆ useCudnn()

bool MyCaffe.param.LRNParameter.useCudnn ( )

Queries whether or not to use NVIDIA's cuDnn.

Returns
Returns true when cuDnn is to be used, false otherwise.

Definition at line 67 of file LRNParameter.cs.

Property Documentation

◆ alpha

double MyCaffe.param.LRNParameter.alpha
getset

Specifies the alpha value used for variance scaling in the normalization formula. NOTE: cuDNN uses a default of alpha = 1e-4, whereas Caffe uses a default of alpha = 1.0

Definition at line 90 of file LRNParameter.cs.

◆ beta

double MyCaffe.param.LRNParameter.beta
getset

Specifies the beta value used as the power parameter in the normalization formula. NOTE: both cuDNN and Caffe use a default of beta = 0.75

Definition at line 100 of file LRNParameter.cs.

◆ k

double MyCaffe.param.LRNParameter.k
getset

Specifies the k value used by the normalization parameter. NOTE: cuDNN uses a default of k = 2.0, whereas Caffe uses a default of k = 1.0.

Definition at line 120 of file LRNParameter.cs.

◆ local_size

uint MyCaffe.param.LRNParameter.local_size
getset

Specifies the local size of the normalization window width.

Definition at line 80 of file LRNParameter.cs.

◆ norm_region

NormRegion MyCaffe.param.LRNParameter.norm_region
getset

Specifies the region over which to normalize.

Definition at line 110 of file LRNParameter.cs.


The documentation for this class was generated from the following file: