MyCaffe
1.12.2.41
Deep learning software for Windows C# programmers.
|
The MemoryLossLayer provides a method of performing a custom loss functionality. Similar to the MemoryDataLayer, the MemoryLossLayer supports an event used to get the loss value. This event is called OnGetLoss, which once retrieved is used for learning on the backward pass. More...
Public Member Functions | |
MemoryLossLayer (CudaDnn< T > cuda, Log log, LayerParameter p) | |
Constructor. More... | |
override void | LayerSetUp (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Setup the layer. More... | |
override void | Reshape (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Reshape the bottom (input) and top (output) blobs. More... | |
Public Member Functions inherited from MyCaffe.layers.LossLayer< T > | |
LossLayer (CudaDnn< T > cuda, Log log, LayerParameter p) | |
The LossLayer constructor. More... | |
double | GetNormalizer (LossParameter.NormalizationMode normalization_mode, int nOuterNum, int nInnerNum, int nValidCount) |
Returns the normalizer used to normalize the loss. More... | |
override bool | AllowForceBackward (int nBottomIdx) |
We usually cannot backpropagate to the labels; ignore force_backward for these inputs. More... | |
Public Member Functions inherited from MyCaffe.layers.Layer< T > | |
Layer (CudaDnn< T > cuda, Log log, LayerParameter p) | |
The Layer constructor. More... | |
void | Dispose () |
Releases all GPU and host resources used by the Layer. More... | |
virtual void | ConnectLoss (LossLayer< T > layer) |
Called to connect the loss OnLoss event to a specified layer (typically the data layer). More... | |
virtual BlobCollection< T > | PreProcessInput (PropertySet customInput, out int nSeqLen, BlobCollection< T > colBottom=null) |
The PreprocessInput allows derivative data layers to convert a property set of input data into the bottom blob collection used as intput. More... | |
virtual bool | PreProcessInput (string strEncInput, int? nDecInput, BlobCollection< T > colBottom) |
Preprocess the input data for the RUN phase. More... | |
virtual List< Tuple< string, int, double > > | PostProcessOutput (Blob< T > blobSofmtax, int nK=1) |
The PostProcessOutput allows derivative data layers to post-process the results, converting them back into text results (e.g., detokenizing). More... | |
virtual List< Tuple< string, int, double > > | PostProcessLogitsOutput (int nCurIdx, Blob< T > blobLogits, Layer< T > softmax, int nAxis, int nK=1) |
The PostProcessLogitsOutput allows derivative data layers to post-process the results, converting them back into text results (e.g., detokenizing). More... | |
virtual string | PostProcessFullOutput (Blob< T > blobSoftmax) |
The PostProcessFullOutput allows derivative data layers to post-process the results, usually be detokenizing the data in the blobSoftmax. More... | |
virtual string | PostProcessOutput (int nIdx) |
Convert the index to the word. More... | |
virtual void | SetOnDebug (EventHandler< GetWorkBlobArgs< T > > fn) |
Set the OnDebug event. More... | |
virtual void | ResetOnDebug (EventHandler< GetWorkBlobArgs< T > > fn) |
Reset the OnDebug event, disabling it. More... | |
virtual bool | ReInitializeParameters (WEIGHT_TARGET target) |
Re-initialize the parameters of the layer. More... | |
void | SetNetReshapeRequest () |
Called by the Net when requesting a reshape. More... | |
void | SetPhase (Phase phase) |
Changes the layer's Phase to the one specified. More... | |
void | Setup (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Implements common Layer setup functionality. More... | |
virtual void | SetNetParameterUsed (NetParameter np) |
This function allows other layers to gather needed information from the NetParameters if any, and is called when initialzing the Net. More... | |
void | ConvertToBase (BlobCollection< T > col) |
ConvertToBase converts any blobs in a collection that are in half size to the base size. More... | |
double | Forward (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Given the bottom (input) Blobs, this function computes the top (output) Blobs and the loss. More... | |
void | Backward (BlobCollection< T > colTop, List< bool > rgbPropagateDown, BlobCollection< T > colBottom) |
Given the top Blob error gradients, compute the bottom Blob error gradients. More... | |
double | loss (int nTopIdx) |
Returns the scalar loss associated with the top Blob at a given index. More... | |
void | set_loss (int nTopIdx, double dfLoss) |
Sets the loss associated with a top Blob at a given index. More... | |
bool | param_propagate_down (int nParamIdx) |
Returns whether or not the Layer should compute gradients w.r.t. a parameter at a particular index given by a parameter index. More... | |
void | set_param_propagate_down (int nParamIdx, bool bPropagate) |
Sets whether or not the Layer should compute gradients w.r.t. a parameter at a particular index given by a parameter index. More... | |
void | SetEnablePassthrough (bool bEnable) |
Enables/disables the pass-through mode. More... | |
Protected Member Functions | |
override void | dispose () |
Releases all GPU and host resources used by the Layer. More... | |
override void | forward (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
The forward computation. More... | |
override void | backward (BlobCollection< T > colTop, List< bool > rgbPropagateDown, BlobCollection< T > colBottom) |
Backpropagates the previously acquired (within the forward pass) loss error gradient w.r.t the predictions. More... | |
Protected Member Functions inherited from MyCaffe.layers.LossLayer< T > | |
void | callLossEvent (Blob< T > blob) |
This method is called by the loss layer to pass the blob data to the OnLoss event (if implemented) More... | |
virtual double | get_normalizer (LossParameter.NormalizationMode normalization_mode, int nValidCount) |
Returns the normalizer used to normalize the loss. More... | |
Protected Member Functions inherited from MyCaffe.layers.Layer< T > | |
void | dispose (ref Layer< T > l) |
Helper method used to dispose internal layers. More... | |
void | dispose (ref Blob< T > b) |
Helper method used to dispose internal blobs. More... | |
void | dispose (ref BlobCollection< T > rg, bool bSetToNull=true) |
Dispose the blob collection. More... | |
GetIterationArgs | getCurrentIteration () |
Fires the OnGetIteration event to query the current iteration. More... | |
long | convert_to_full (int nCount, long hMem) |
Convert half memory to full memory. More... | |
void | convert (BlobCollection< T > col) |
Convert a collection of blobs from / to half size. More... | |
virtual bool | reshapeNeeded (BlobCollection< T > colBottom, BlobCollection< T > colTop, bool bReset=true) |
Tests the shapes of both the bottom and top blobs and if they are the same as the previous sizing, returns false indicating that no reshape is needed. More... | |
bool | compareShapes (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Compare the shapes of the top and bottom and if the same, return true, otherwise false. More... | |
void | setShapes (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Set the internal shape sizes - used when determining if a Reshape is necessary. More... | |
virtual void | setup_internal_blobs (BlobCollection< T > col) |
Derivative layers should add all internal blobws to the 'col' provided. More... | |
void | CheckBlobCounts (BlobCollection< T > colBottom, BlobCollection< T > colTop) |
Called by the Layer::Setup function to check the number of bottom (input) and top (output) Blobs provided match the expected number of blobs expected via the {EactNum,Min,Max}{Bottom,Top}Blobs functions. More... | |
void | SetLossWeights (BlobCollection< T > colTop) |
Called by Layer::Setup to initialize the weights associated with any top (output) Blobs in the loss function ans store non-zero loss weights in the diff Blob. More... | |
LayerParameter | convertLayerParam (LayerParameter pChild, LayerParameter pParent) |
Called to convert a parent LayerParameterEx, used in blob sharing, with a child layer parameter. More... | |
bool | shareParameter (Blob< T > b, List< int > rgMinShape, bool bAllowEndsWithComparison=false) |
Attempts to share a parameter Blob if another parameter Blob with the same name and accpetable size is found. More... | |
bool | shareLayerBlob (Blob< T > b, List< int > rgMinShape) |
Attempts to share a Layer Blob if another parameter Blob with the same name and acceptable size is found. More... | |
bool | shareLayerBlobs (Layer< T > layer) |
Attempts to share the Layer blobs and internal_blobs with matching names and sizes with those in another matching layer. More... | |
virtual WorkspaceArgs | getWorkspace () |
Returns the WorkspaceArgs used to share a workspace between Layers. More... | |
virtual bool | setWorkspace (ulong lSizeInBytes) |
Sets the workspace size (in items) and returns true if set, false otherwise. More... | |
void | check_nan (Blob< T > b) |
Checks a Blob for NaNs and throws an exception if found. More... | |
T | convert (double df) |
Converts a double to a generic. More... | |
T | convert (float f) |
Converts a float to a generic. More... | |
double | convertD (T df) |
Converts a generic to a double value. More... | |
float | convertF (T df) |
Converts a generic to a float value. More... | |
double[] | convertD (T[] rg) |
Converts an array of generic values into an array of double values. More... | |
T[] | convert (double[] rg) |
Converts an array of double values into an array of generic values. More... | |
float[] | convertF (T[] rg) |
Converts an array of float values into an array of generic values. More... | |
T[] | convert (float[] rg) |
Converts an array of float values into an array of generic values. More... | |
int | val_at (T[] rg, int nIdx) |
Returns the integer value at a given index in a generic array. More... | |
Size | size_at (Blob< T > b) |
Returns the Size of a given two element Blob, such as one that stores Blob size information. More... | |
Properties | |
object | user_state [getset] |
Optionally specifies a user-state that is passed to the OnGetLoss event. More... | |
override int | ExactNumBottomBlobs [get] |
Returns the exact number of required bottom (input) Blobs as variable. More... | |
override int | MinBottomBlobs [get] |
Returns the minimum number of required bottom (output) Blobs: input 1. More... | |
override int | MaxBottomBlobs [get] |
Returns the maximum number of required bottom (output) Blobs: input 1 and 2. More... | |
override int | ExactNumTopBlobs [get] |
Returns the exact number of required top (output) Blobs: loss. More... | |
Properties inherited from MyCaffe.layers.LossLayer< T > | |
override int | ExactNumBottomBlobs [get] |
Returns the exact number of required bottom (intput) Blobs: prediction, label More... | |
override int | ExactNumTopBlobs [get] |
Returns the exact number of required top (output) Blobs: loss More... | |
override bool | AutoTopBlobs [get] |
For convenience and backwards compatibility, insturct the Net to automatically allocate a single top Blob for LossLayers, into which they output their singleton loss, (even if the user didn't specify one in the prototxt, etc.). More... | |
Properties inherited from MyCaffe.layers.Layer< T > | |
LayerParameter.? LayerType | parent_layer_type [get] |
Optionally, specifies the parent layer type (e.g. LOSS, etc.) More... | |
virtual bool | SupportsPreProcessing [get] |
Should return true when PreProcessing methods are overriden. More... | |
virtual bool | SupportsPostProcessing [get] |
Should return true when pre PostProcessing methods are overriden. More... | |
virtual bool | SupportsPostProcessingLogits [get] |
Should return true when pre PostProcessingLogits methods are overriden. More... | |
virtual bool | SupportsPostProcessingFullOutput [get] |
Should return true when PostProcessingFullOutput is supported. More... | |
BlobCollection< T > | blobs [get] |
Returns the collection of learnable parameter Blobs for the Layer. More... | |
BlobCollection< T > | internal_blobs [get] |
Returns the collection of internal Blobs used by the Layer. More... | |
LayerParameter | layer_param [get] |
Returns the LayerParameter for this Layer. More... | |
LayerParameter.LayerType | type [get] |
Returns the LayerType of this Layer. More... | |
virtual int | ExactNumBottomBlobs [get] |
Returns the exact number of bottom (input) Blobs required by the Layer, or -1 if no exact number is required. More... | |
virtual int | MinBottomBlobs [get] |
Returns the minimum number of bottom (input) Blobs required by the Layer, or -1 if no minimum number is required. More... | |
virtual int | MaxBottomBlobs [get] |
Returns the maximum number of bottom (input) Blobs required by the Layer, or -1 if no maximum number is required. More... | |
virtual int | ExactNumTopBlobs [get] |
Returns the exact number of top (output) Blobs required by the Layer, or -1 if no exact number is required. More... | |
virtual int | MinTopBlobs [get] |
Returns the minimum number of top (output) Blobs required by the Layer, or -1 if no minimum number is required. More... | |
virtual int | MaxTopBlobs [get] |
Returns the maximum number of top (output) Blobs required by the Layer, or -1 if no maximum number is required. More... | |
virtual bool | EqualNumBottomTopBlobs [get] |
Returns true if the Layer requires and equal number of bottom (input) and top (output) Blobs. More... | |
virtual bool | AutoTopBlobs [get] |
Return whether "anonymous" top (output) Blobs are created automatically by the Layer. More... | |
double | forward_timing [get] |
Returns the timing of the last forward pass in milliseconds. More... | |
double | forward_timing_average [get] |
Returns the average timing of the forward passes in milliseconds. More... | |
double | backward_timing [get] |
Returns the timing of the last backward pass in milliseconds. More... | |
double | backward_timing_average [get] |
Returns the average timing of the backward passes in milliseconds. More... | |
Events | |
EventHandler< MemoryLossLayerGetLossArgs< T > > | OnGetLoss |
The OnGetLoss event fires during each forward pass. The value returned is saved, and applied on the backward pass during training. More... | |
Events inherited from MyCaffe.layers.LossLayer< T > | |
EventHandler< LossArgs > | OnLoss |
Specifies the loss event called on each learning cycle. More... | |
Events inherited from MyCaffe.layers.Layer< T > | |
EventHandler< WorkspaceArgs > | OnGetWorkspace |
Specifies the OnGetWorkspace event that fires when the getWorkspace() function is called by a layer to get a shareable workspace to conserve GPU memory. More... | |
EventHandler< WorkspaceArgs > | OnSetWorkspace |
Specifies the OnSetWorkspace event that fires when the setWorkspace() function is called by a layer to get a shareable workspace to conserve GPU memory. More... | |
EventHandler< GetIterationArgs > | OnGetIteration |
Specifies the OnGetIteration event that fires when a layer needs to get the current iteration from the solver. More... | |
EventHandler< GetWorkBlobArgs< T > > | OnDebug |
Specifies the OnGetWorkBlob event that is only supported when debugging to get a work blob from the primary Net holding this layer. More... | |
Additional Inherited Members | |
Static Public Member Functions inherited from MyCaffe.layers.Layer< T > | |
static Layer< T > | Create (CudaDnn< T > cuda, Log log, LayerParameter p, CancelEvent evtCancel, IXDatabaseBase db=null, TransferInput trxinput=null) |
Create a new Layer based on the LayerParameter. More... | |
Static Public Attributes inherited from MyCaffe.layers.LossLayer< T > | |
const double | kLOG_THRESHOLD = 1e-20 |
Specifies the minimum threshold for loss values. More... | |
Protected Attributes inherited from MyCaffe.layers.LossLayer< T > | |
bool | m_bIgnoreLabels = false |
Set to true when labels are to be ignored. More... | |
LossParameter.NormalizationMode | m_normalization = LossParameter.NormalizationMode.NONE |
Specifies the normalization mode used to normalize the loss. More... | |
int | m_nOuterNum = 0 |
Specifies the outer num, such as the batch count (e.g. count(0, axis)). Each derivative class must set this value appropriately. More... | |
int | m_nInnerNum = 0 |
Specifies the inner num, such as the channel + height + width (e.g. count(axis + 1)). Each derivative class must set this value appropriately. More... | |
Protected Attributes inherited from MyCaffe.layers.Layer< T > | |
LayerParameter.LayerType | m_type = LayerParameter.LayerType._MAX |
Specifies the Layer type. More... | |
CudaDnn< T > | m_cuda |
Specifies the CudaDnn connection to Cuda. More... | |
Log | m_log |
Specifies the Log for output. More... | |
LayerParameter | m_param |
Specifies the LayerParameter describing the Layer. More... | |
Phase | m_phase |
Specifies the Phase under which the Layer is run. More... | |
BlobCollection< T > | m_colBlobs |
Specifies the learnable parameter Blobs of the Layer. More... | |
BlobCollection< T > | m_colInternalBlobs = new BlobCollection<T>() |
Specifies internal blobs used by the layer. More... | |
DictionaryMap< bool > | m_rgbParamPropagateDown |
Specifies whether or not to compute the learnable diff of each parameter Blob. More... | |
DictionaryMap< double > | m_rgLoss |
Specifies the loss values that indeicate whether each top (output) Blob has a non-zero weight in the objective function.. More... | |
T | m_tOne |
Specifies a generic type equal to 1.0. More... | |
T | m_tZero |
Specifies a generic type equal to 0.0. More... | |
bool | m_bEnablePassthrough = false |
Enables/disables the pass-through mode for the layer. Default = false. More... | |
bool | m_bUseHalfSize = false |
Specifies that the half size of the top (if any) should be converted to the base size. More... | |
bool | m_bConvertTopOnFwd = false |
Specifies whether or not the layer should convert the top on the forward pass when using half sized memory (typically only done with input data). More... | |
bool | m_bConvertTopOnBwd = true |
Specifies whether or not to convert the top on the backward pass when using half sized memory (typically not done on loss layers). More... | |
bool | m_bConvertBottom = true |
Specifies whether or not the layer should convert the bottom when using half sized memory. More... | |
bool | m_bReshapeOnForwardNeeded = true |
Specifies whether or not the reshape on forward is needed or not. More... | |
bool | m_bNetReshapeRequest = false |
Specifies whether the reshape is requested from a Net.Reshape call or not. More... | |
LayerParameter.? LayerType | m_parentLayerType = null |
Specifies the layer type of the parent. More... | |
The MemoryLossLayer provides a method of performing a custom loss functionality. Similar to the MemoryDataLayer, the MemoryLossLayer supports an event used to get the loss value. This event is called OnGetLoss, which once retrieved is used for learning on the backward pass.
To use this layer, you must implement the OnGetLoss event.
T |
Definition at line 20 of file MemoryLossLayer.cs.
MyCaffe.layers.MemoryLossLayer< T >.MemoryLossLayer | ( | CudaDnn< T > | cuda, |
Log | log, | ||
LayerParameter | p | ||
) |
Constructor.
cuda | Cuda engine. |
log | General log. |
p | provides LossParameter loss_param, with options:
|
Definition at line 44 of file MemoryLossLayer.cs.
|
protectedvirtual |
Backpropagates the previously acquired (within the forward pass) loss error gradient w.r.t the predictions.
colTop | top output blob vector (length 1), providing the error gradient with respect to the outputs.
|
rgbPropagateDown | see Layer::Backward. |
colBottom | bottom input blob vector (length 1-2)
|
Implements MyCaffe.layers.Layer< T >.
Definition at line 203 of file MemoryLossLayer.cs.
|
protectedvirtual |
Releases all GPU and host resources used by the Layer.
Reimplemented from MyCaffe.layers.Layer< T >.
Definition at line 51 of file MemoryLossLayer.cs.
|
protectedvirtual |
The forward computation.
colBottom | bottom input blob vector (length 2)
|
colTop | top output blob vector (length 1) the computed cross_entropy classification loss: for softmax output class probabilities . |
Implements MyCaffe.layers.Layer< T >.
Definition at line 176 of file MemoryLossLayer.cs.
|
virtual |
Setup the layer.
colBottom | Specifies the collection of bottom (input) Blobs. |
colTop | Specifies the collection of top (output) Blobs. |
Reimplemented from MyCaffe.layers.LossLayer< T >.
Definition at line 102 of file MemoryLossLayer.cs.
|
virtual |
Reshape the bottom (input) and top (output) blobs.
colBottom | Specifies the collection of bottom (input) Blobs. |
colTop | Specifies the collection of top (output) Blobs. |
Reimplemented from MyCaffe.layers.LossLayer< T >.
Definition at line 119 of file MemoryLossLayer.cs.
|
get |
Returns the exact number of required bottom (input) Blobs as variable.
Definition at line 68 of file MemoryLossLayer.cs.
|
get |
Returns the exact number of required top (output) Blobs: loss.
Definition at line 92 of file MemoryLossLayer.cs.
|
get |
Returns the maximum number of required bottom (output) Blobs: input 1 and 2.
Definition at line 84 of file MemoryLossLayer.cs.
|
get |
Returns the minimum number of required bottom (output) Blobs: input 1.
Definition at line 76 of file MemoryLossLayer.cs.
|
getset |
Optionally specifies a user-state that is passed to the OnGetLoss event.
Definition at line 59 of file MemoryLossLayer.cs.
EventHandler<MemoryLossLayerGetLossArgs<T> > MyCaffe.layers.MemoryLossLayer< T >.OnGetLoss |
The OnGetLoss event fires during each forward pass. The value returned is saved, and applied on the backward pass during training.
Definition at line 30 of file MemoryLossLayer.cs.