MyCaffe  1.12.2.41
Deep learning software for Windows C# programmers.
MyCaffe.param.DataNormalizerParameter Class Reference

Specifies the parameter for the data normalizer layer. More...

Inheritance diagram for MyCaffe.param.DataNormalizerParameter:
MyCaffe.param.LayerParameterBase MyCaffe.basecode.BaseParameter MyCaffe.basecode.IBinaryPersist

Public Types

enum  NORMALIZATION_STEP {
  CENTER , STDEV , RANGE , ADDITIVE ,
  RETURNS , LOG
}
 Specifies the normalization step to run. More...
 
- Public Types inherited from MyCaffe.param.LayerParameterBase
enum  LABEL_TYPE { NONE , SINGLE , MULTIPLE , ONLY_ONE }
 Defines the label type. More...
 

Public Member Functions

 DataNormalizerParameter ()
 Constructor for the parameter. More...
 
override object Load (System.IO.BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
override void Copy (LayerParameterBase src)
 Copy on parameter to another. More...
 
override LayerParameterBase Clone ()
 Creates a new copy of this instance of the parameter. More...
 
override RawProto ToProto (string strName)
 Convert the parameter into a RawProto. More...
 
- Public Member Functions inherited from MyCaffe.param.LayerParameterBase
 LayerParameterBase ()
 Constructor for the parameter. More...
 
virtual string PrepareRunModelInputs ()
 This method gives derivative classes a chance specify model inputs required by the run model. More...
 
virtual void PrepareRunModel (LayerParameter p)
 This method gives derivative classes a chance to prepare the layer for a run-model. More...
 
void Save (BinaryWriter bw)
 Save this parameter to a binary writer. More...
 
abstract object Load (BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
- Public Member Functions inherited from MyCaffe.basecode.BaseParameter
 BaseParameter ()
 Constructor for the parameter. More...
 
virtual bool Compare (BaseParameter p)
 Compare this parameter to another parameter. More...
 

Static Public Member Functions

static DataNormalizerParameter FromProto (RawProto rp, DataNormalizerParameter p=null)
 Parses the parameter from a RawProto. More...
 
- Static Public Member Functions inherited from MyCaffe.basecode.BaseParameter
static double ParseDouble (string strVal)
 Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static bool TryParse (string strVal, out double df)
 Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static float ParseFloat (string strVal)
 Parse float values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static bool TryParse (string strVal, out float f)
 Parse doufloatble values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 

Properties

int? label_data_channel [getset]
 Specifies to data channel used for the label (if any). More...
 
bool across_data_and_label [getset]
 Specifies to normalize across both the data and label data together. More...
 
List< NORMALIZATION_STEPsteps [getset]
 Specifies the normalization steps which are performed in the order for which they are listed. More...
 
List< int > ignore_channels [getset]
 Specifies the channels to ignore and just pass through in their original form. More...
 
double? input_stdev [getset]
 Specifies the input standard deviation, if known. When not specified input_stdev is determined dynamically from the data input itself. More...
 
double? input_mean [getset]
 Specifies the input mean, if known. When not specified the input_mean is determined dynamically from the data input itself. More...
 
double input_min [getset]
 Specifies the minimum data range of the intput, if known. If both input_min and input_max are 0 the input_min/input_max are determined dynamically from the data input itself. More...
 
double input_max [getset]
 Specifies the maximum data range of the intput, if known. If both input_min and input_max are 0 the input_min/input_max are determined dynamically from the data input itself. More...
 
double output_min [getset]
 Specifies the minimum data range of the output. More...
 
double output_max [getset]
 Specifies the maximum data range of the output. More...
 

Detailed Description

Specifies the parameter for the data normalizer layer.

The data normalizer layer provides a detailed normalization that is applied to the data (and label if desired).

Definition at line 18 of file DataNormalizerParameter.cs.

Member Enumeration Documentation

◆ NORMALIZATION_STEP

Specifies the normalization step to run.

Enumerator
CENTER 

Center the data by subtracting the mean.

STDEV 

Normalize the data by dividing by the standard deviation.

RANGE 

Normalize the data by fitting the data into the 'output_min'/'output_max' range.

ADDITIVE 

Add each data value to the previous data value.

RETURNS 

Create the percentage change of the current data from the previous.

LOG 

Normalize the data by taking the LOG on each item.

Definition at line 34 of file DataNormalizerParameter.cs.

Constructor & Destructor Documentation

◆ DataNormalizerParameter()

MyCaffe.param.DataNormalizerParameter.DataNormalizerParameter ( )

Constructor for the parameter.

Definition at line 63 of file DataNormalizerParameter.cs.

Member Function Documentation

◆ Clone()

override LayerParameterBase MyCaffe.param.DataNormalizerParameter.Clone ( )
virtual

Creates a new copy of this instance of the parameter.

Returns
A new instance of this parameter is returned.

Implements MyCaffe.param.LayerParameterBase.

Definition at line 194 of file DataNormalizerParameter.cs.

◆ Copy()

override void MyCaffe.param.DataNormalizerParameter.Copy ( LayerParameterBase  src)
virtual

Copy on parameter to another.

Parameters
srcSpecifies the parameter to copy.

Implements MyCaffe.param.LayerParameterBase.

Definition at line 188 of file DataNormalizerParameter.cs.

◆ FromProto()

static DataNormalizerParameter MyCaffe.param.DataNormalizerParameter.FromProto ( RawProto  rp,
DataNormalizerParameter  p = null 
)
static

Parses the parameter from a RawProto.

Parameters
rpSpecifies the RawProto to parse.
pOptionally, specifies an instance to load. If null, a new instance is created and loaded.
Returns
A new instance of the parameter is returned.

Definition at line 242 of file DataNormalizerParameter.cs.

◆ Load()

override object MyCaffe.param.DataNormalizerParameter.Load ( System.IO.BinaryReader  br,
bool  bNewInstance = true 
)

Load the parameter from a binary reader.

Parameters
brSpecifies the binary reader.
bNewInstanceWhen true a new instance is created (the default), otherwise the existing instance is loaded from the binary reader.
Returns
Returns an instance of the parameter.

Definition at line 176 of file DataNormalizerParameter.cs.

◆ ToProto()

override RawProto MyCaffe.param.DataNormalizerParameter.ToProto ( string  strName)
virtual

Convert the parameter into a RawProto.

Parameters
strNameSpecifies the name to associate with the RawProto.
Returns
The new RawProto is returned.

Implements MyCaffe.basecode.BaseParameter.

Definition at line 206 of file DataNormalizerParameter.cs.

Property Documentation

◆ across_data_and_label

bool MyCaffe.param.DataNormalizerParameter.across_data_and_label
getset

Specifies to normalize across both the data and label data together.

When true centering and other normalization takes place across the entire data range within both the data and label together. When false centering and other normalization takes place separately for data and separately for the label (if supplied).

Definition at line 89 of file DataNormalizerParameter.cs.

◆ ignore_channels

List<int> MyCaffe.param.DataNormalizerParameter.ignore_channels
getset

Specifies the channels to ignore and just pass through in their original form.

Definition at line 109 of file DataNormalizerParameter.cs.

◆ input_max

double MyCaffe.param.DataNormalizerParameter.input_max
getset

Specifies the maximum data range of the intput, if known. If both input_min and input_max are 0 the input_min/input_max are determined dynamically from the data input itself.

Definition at line 149 of file DataNormalizerParameter.cs.

◆ input_mean

double? MyCaffe.param.DataNormalizerParameter.input_mean
getset

Specifies the input mean, if known. When not specified the input_mean is determined dynamically from the data input itself.

Definition at line 129 of file DataNormalizerParameter.cs.

◆ input_min

double MyCaffe.param.DataNormalizerParameter.input_min
getset

Specifies the minimum data range of the intput, if known. If both input_min and input_max are 0 the input_min/input_max are determined dynamically from the data input itself.

Definition at line 139 of file DataNormalizerParameter.cs.

◆ input_stdev

double? MyCaffe.param.DataNormalizerParameter.input_stdev
getset

Specifies the input standard deviation, if known. When not specified input_stdev is determined dynamically from the data input itself.

Definition at line 119 of file DataNormalizerParameter.cs.

◆ label_data_channel

int? MyCaffe.param.DataNormalizerParameter.label_data_channel
getset

Specifies to data channel used for the label (if any).

Some models, such as LSTM, use input data as part of the label. The label_data_channel specifies which channel within the data is used as the label. When not specified, the label must have the same number of channels as the data.

Definition at line 75 of file DataNormalizerParameter.cs.

◆ output_max

double MyCaffe.param.DataNormalizerParameter.output_max
getset

Specifies the maximum data range of the output.

Definition at line 169 of file DataNormalizerParameter.cs.

◆ output_min

double MyCaffe.param.DataNormalizerParameter.output_min
getset

Specifies the minimum data range of the output.

Definition at line 159 of file DataNormalizerParameter.cs.

◆ steps

List<NORMALIZATION_STEP> MyCaffe.param.DataNormalizerParameter.steps
getset

Specifies the normalization steps which are performed in the order for which they are listed.

Definition at line 99 of file DataNormalizerParameter.cs.


The documentation for this class was generated from the following file: