MyCaffe  1.12.2.41
Deep learning software for Windows C# programmers.
MyCaffe.param.AccuracyParameter Class Reference

Specifies the parameters for the AccuracyLayer. More...

Inheritance diagram for MyCaffe.param.AccuracyParameter:
MyCaffe.param.LayerParameterBase MyCaffe.basecode.BaseParameter MyCaffe.basecode.IBinaryPersist

Public Member Functions

 AccuracyParameter ()
 Constructor for the parameter. More...
 
bool IgnoreLabel (int nLabel)
 Returns 'true' if the label is to be ignored. More...
 
override object Load (System.IO.BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
override void Copy (LayerParameterBase src)
 Copy on parameter to another. More...
 
override LayerParameterBase Clone ()
 Creates a new copy of this instance of the parameter. More...
 
override RawProto ToProto (string strName)
 Convert the parameter into a RawProto. More...
 
- Public Member Functions inherited from MyCaffe.param.LayerParameterBase
 LayerParameterBase ()
 Constructor for the parameter. More...
 
virtual string PrepareRunModelInputs ()
 This method gives derivative classes a chance specify model inputs required by the run model. More...
 
virtual void PrepareRunModel (LayerParameter p)
 This method gives derivative classes a chance to prepare the layer for a run-model. More...
 
void Save (BinaryWriter bw)
 Save this parameter to a binary writer. More...
 
abstract object Load (BinaryReader br, bool bNewInstance=true)
 Load the parameter from a binary reader. More...
 
- Public Member Functions inherited from MyCaffe.basecode.BaseParameter
 BaseParameter ()
 Constructor for the parameter. More...
 
virtual bool Compare (BaseParameter p)
 Compare this parameter to another parameter. More...
 

Static Public Member Functions

static AccuracyParameter FromProto (RawProto rp)
 Parses the parameter from a RawProto. More...
 
- Static Public Member Functions inherited from MyCaffe.basecode.BaseParameter
static double ParseDouble (string strVal)
 Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static bool TryParse (string strVal, out double df)
 Parse double values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static float ParseFloat (string strVal)
 Parse float values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 
static bool TryParse (string strVal, out float f)
 Parse doufloatble values using the US culture if the decimal separator = '.', then using the native culture, and if then lastly trying the US culture to handle prototypes containing '.' as the separator, yet parsed in a culture that does not use '.' as a decimal. More...
 

Properties

bool enable_simple_accuracy [getset]
 Enables a simple accuracy calculation where the argmax is compared with the actual. More...
 
bool enable_last_element_only [getset]
 When computing accuracy, only count the last element of the prediction blob. More...
 
uint top_k [getset]
 When computing accuracy, count as correct by comparing the true label to the top_k scoring classes. By default, only compare the top scoring class (i.e. argmax). More...
 
int axis [getset]
 The 'label' axis of the prediction blob, whos argmax corresponds to the predicted label – may be negative to index from the end (e.g., -1 for the last axis). For example, if axis == 1 and the predictions are $ (N \times C \times H \times W) $, the label blob is expected to contain N*H*W ground truth labels with integer values in {0, 1, ..., C-1}. More...
 
List< int > ignore_labels [getset]
 If specified, ignore instances with the given label(s). More...
 

Additional Inherited Members

- Public Types inherited from MyCaffe.param.LayerParameterBase
enum  LABEL_TYPE { NONE , SINGLE , MULTIPLE , ONLY_ONE }
 Defines the label type. More...
 

Detailed Description

Specifies the parameters for the AccuracyLayer.

See also
Convolutional Architecture Exploration for Action Recognition and Image Classification by J. T. Turner, David Aha, Leslie Smith, and Kalyan Moy Gupta, 2015.

Definition at line 18 of file AccuracyParameter.cs.

Constructor & Destructor Documentation

◆ AccuracyParameter()

MyCaffe.param.AccuracyParameter.AccuracyParameter ( )

Constructor for the parameter.

Definition at line 27 of file AccuracyParameter.cs.

Member Function Documentation

◆ Clone()

override LayerParameterBase MyCaffe.param.AccuracyParameter.Clone ( )
virtual

Creates a new copy of this instance of the parameter.

Returns
A new instance of this parameter is returned.

Implements MyCaffe.param.LayerParameterBase.

Definition at line 127 of file AccuracyParameter.cs.

◆ Copy()

override void MyCaffe.param.AccuracyParameter.Copy ( LayerParameterBase  src)
virtual

Copy on parameter to another.

Parameters
srcSpecifies the parameter to copy.

Implements MyCaffe.param.LayerParameterBase.

Definition at line 116 of file AccuracyParameter.cs.

◆ FromProto()

static AccuracyParameter MyCaffe.param.AccuracyParameter.FromProto ( RawProto  rp)
static

Parses the parameter from a RawProto.

Parameters
rpSpecifies the RawProto to parse.
Returns
A new instance of the parameter is returned.

Definition at line 171 of file AccuracyParameter.cs.

◆ IgnoreLabel()

bool MyCaffe.param.AccuracyParameter.IgnoreLabel ( int  nLabel)

Returns 'true' if the label is to be ignored.

Parameters
nLabelSpecifies the label to test.
Returns
Returns 'true' if the label is to be ignored.

Definition at line 98 of file AccuracyParameter.cs.

◆ Load()

override object MyCaffe.param.AccuracyParameter.Load ( System.IO.BinaryReader  br,
bool  bNewInstance = true 
)

Load the parameter from a binary reader.

Parameters
brSpecifies the binary reader.
bNewInstanceWhen true a new instance is created (the default), otherwise the existing instance is loaded from the binary reader.
Returns
Returns an instance of the parameter.

Definition at line 104 of file AccuracyParameter.cs.

◆ ToProto()

override RawProto MyCaffe.param.AccuracyParameter.ToProto ( string  strName)
virtual

Convert the parameter into a RawProto.

Parameters
strNameSpecifies the name to associate with the RawProto.
Returns
The new RawProto is returned.

Implements MyCaffe.basecode.BaseParameter.

Definition at line 139 of file AccuracyParameter.cs.

Property Documentation

◆ axis

int MyCaffe.param.AccuracyParameter.axis
getset

The 'label' axis of the prediction blob, whos argmax corresponds to the predicted label – may be negative to index from the end (e.g., -1 for the last axis). For example, if axis == 1 and the predictions are $ (N \times C \times H \times W) $, the label blob is expected to contain N*H*W ground truth labels with integer values in {0, 1, ..., C-1}.

Definition at line 71 of file AccuracyParameter.cs.

◆ enable_last_element_only

bool MyCaffe.param.AccuracyParameter.enable_last_element_only
getset

When computing accuracy, only count the last element of the prediction blob.

Definition at line 45 of file AccuracyParameter.cs.

◆ enable_simple_accuracy

bool MyCaffe.param.AccuracyParameter.enable_simple_accuracy
getset

Enables a simple accuracy calculation where the argmax is compared with the actual.

Definition at line 35 of file AccuracyParameter.cs.

◆ ignore_labels

List<int> MyCaffe.param.AccuracyParameter.ignore_labels
getset

If specified, ignore instances with the given label(s).

Definition at line 81 of file AccuracyParameter.cs.

◆ top_k

uint MyCaffe.param.AccuracyParameter.top_k
getset

When computing accuracy, count as correct by comparing the true label to the top_k scoring classes. By default, only compare the top scoring class (i.e. argmax).

Definition at line 57 of file AccuracyParameter.cs.


The documentation for this class was generated from the following file: