MyCaffe  1.12.2.41
Deep learning software for Windows C# programmers.
MyCaffe.common.Blob< T > Member List

This is the complete list of members for MyCaffe.common.Blob< T >, including all inherited members.

add_scalar(double dfVal)MyCaffe.common.Blob< T >
asum_data()MyCaffe.common.Blob< T >
asum_diff()MyCaffe.common.Blob< T >
AsyncGpuPush(long hStream)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, bool bIncludeDiff=true, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, int nNum, int nChannels, int nHeight, int nWidth, bool bIncludeDiff=true, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, List< int > rgShape, bool bIncludeDiff=true, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, int[] rgShape, bool bIncludeDiff=true, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, Blob< T > b, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, SimpleDatum d, bool bCopyData=false, bool bIncludeDiff=true, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(CudaDnn< T > cuda, Log log, BlobProto bp, bool bUseHalfSize=false)MyCaffe.common.Blob< T >
Blob(Blob< T > blob, long lCount, long lOffset)MyCaffe.common.Blob< T >
CanonicalAxisIndex(int nIdx)MyCaffe.common.Blob< T >
channelsMyCaffe.common.Blob< T >
Clone()MyCaffe.common.Blob< T >
Compare(Blob< T > other, Blob< T > work, bool bDiff=false, double dfTol=1e-8, bool bZeroCheck=true, bool bFullCompare=false, bool bDetectNans=true, bool bForceOtherData=false)MyCaffe.common.Blob< T >
Compare(CudaDnn< double > cuda, Blob< T > other, Blob< double > work, bool bDiff=false, double dfTol=1e-8)MyCaffe.common.Blob< T >
CompareEx(Blob< T > other, Blob< T > work, out double dfMin, out double dfMax, bool bDiff=false, double dfTol=1e-8, bool bZeroCheck=true, bool bFullCompare=false, bool bDetectNans=true, bool bForceOtherData=false)MyCaffe.common.Blob< T >
CompareShape(List< int > rgShape, bool bCompareCpuDataLen=false)MyCaffe.common.Blob< T >
CompareShape(int[] rgShape, bool bCompareCpuDataLen=false)MyCaffe.common.Blob< T >
ConvertToBase(long hWorkMem, ulong lWorkSize, bool bData, bool bDiff)MyCaffe.common.Blob< T >
ConvertToHalf(long hWorkMem, ulong lWorkSize, bool bData, bool bDiff)MyCaffe.common.Blob< T >
CopyFrom(Blob< T > src, int nSrcOffset, int nDstOffset, int nCount, bool bCopyData, bool bCopyDiff)MyCaffe.common.Blob< T >
CopyFrom(Blob< T > src, bool bCopyDiff=false, bool bReshape=false, long hDstHostBuffer=0, bool bIgnoreShape=false)MyCaffe.common.Blob< T >
CopyFrom(Blob< T > blobSrc, int nChannelFrom, int nChannelTo, bool bCopyDiff=false)MyCaffe.common.Blob< T >
CopyFromAndPad(Blob< T > src, double dfPad=0, bool bCopyDiff=false)MyCaffe.common.Blob< T >
CopyFromAndTransposeHeightWidth(Blob< T > blobSrc, bool bCopyDiff=false, bool bUseCuda=true)MyCaffe.common.Blob< T >
CopyParameters(Blob< T > b)MyCaffe.common.Blob< T >
count()MyCaffe.common.Blob< T >
count(int nStartIdx, int nEndIdx)MyCaffe.common.Blob< T >
count(int nStartIdx)MyCaffe.common.Blob< T >
cpu_dataMyCaffe.common.Blob< T >
cpu_diffMyCaffe.common.Blob< T >
CudaMyCaffe.common.Blob< T >
dataMyCaffe.common.Blob< T >
data_at(int n, int c, int h, int w)MyCaffe.common.Blob< T >
data_at(List< int > rgIdx)MyCaffe.common.Blob< T >
diffMyCaffe.common.Blob< T >
diff_at(int n, int c, int h, int w)MyCaffe.common.Blob< T >
diff_at(List< int > rgIdx)MyCaffe.common.Blob< T >
DiffExistsMyCaffe.common.Blob< T >
Dispose(bool bDisposing)MyCaffe.common.Blob< T >protectedvirtual
Dispose()MyCaffe.common.Blob< T >
freeze_learningMyCaffe.common.Blob< T >
FromByteArray(CudaDnn< T > cuda, Log log, byte[] rg)MyCaffe.common.Blob< T >static
FromProto(BlobProto bp, bool bReshape=true)MyCaffe.common.Blob< T >
GetConversionWorkSize(bool bUseHalfSize)MyCaffe.common.Blob< T >
GetData(int nIdx)MyCaffe.common.Blob< T >
GetDiff(int nIdx)MyCaffe.common.Blob< T >
GetMaxData(out long lPos)MyCaffe.common.Blob< T >
GetMaxDiff(out long lPos)MyCaffe.common.Blob< T >
GetMinData(out long lPos)MyCaffe.common.Blob< T >
GetMinDiff(out long lPos)MyCaffe.common.Blob< T >
GetParameter(string strName)MyCaffe.common.Blob< T >
gpu_dataMyCaffe.common.Blob< T >
gpu_diffMyCaffe.common.Blob< T >
gpu_shapeMyCaffe.common.Blob< T >
HalfSizeMyCaffe.common.Blob< T >
heightMyCaffe.common.Blob< T >
LegacyShape(int nIdx)MyCaffe.common.Blob< T >
Load(CudaDnn< T > cuda, Log log, BinaryReader br, bool bData, bool bDiff)MyCaffe.common.Blob< T >static
LoadBinary(CudaDnn< T > cuda, Log log, string strFile, bool bData, bool bDiff)MyCaffe.common.Blob< T >static
LoadFromNumpy(string strFile, bool bLoadDiff=false, bool bLoadDataOnly=false, Log log=null, int nMax=int.MaxValue)MyCaffe.common.Blob< T >
LoadFromNumpy(string strFile, Log log=null, int nMax=int.MaxValue, int nStartIdx=0, int nCount=int.MaxValue)MyCaffe.common.Blob< T >static
LogMyCaffe.common.Blob< T >
MathAdd(Blob< T > blobA, T fScale)MyCaffe.common.Blob< T >
MathDiv(T fScale)MyCaffe.common.Blob< T >
MathSub(Blob< T > blobA)MyCaffe.common.Blob< T >
MatMul(Blob< T > blobA, Blob< T > blobB, bool bReshape=false, bool bTransA=false, bool bTransB=false, double dfScale=1.0, bool bADiff=false, bool bBDiff=false, bool bCDiff=false)MyCaffe.common.Blob< T >
MatMulGrad(Blob< T > blobA, Blob< T > blobB, Blob< T > blobWork, double dfScale=1.0)MyCaffe.common.Blob< T >
MAX_BLOB_AXESMyCaffe.common.Blob< T >static
max_dataMyCaffe.common.Blob< T >
max_diffMyCaffe.common.Blob< T >
mean(float[] rgDf=null, bool bDiff=false)MyCaffe.common.Blob< T >
min_dataMyCaffe.common.Blob< T >
min_diffMyCaffe.common.Blob< T >
minmax_data(Blob< T > work, bool bDetectNans=false, bool bUseChunks=false)MyCaffe.common.Blob< T >
minmax_diff(Blob< T > work, bool bDetectNans=false, bool bUseChunks=false)MyCaffe.common.Blob< T >
MinusOneMyCaffe.common.Blob< T >static
mutable_cpu_dataMyCaffe.common.Blob< T >
mutable_cpu_diffMyCaffe.common.Blob< T >
mutable_gpu_dataMyCaffe.common.Blob< T >
mutable_gpu_diffMyCaffe.common.Blob< T >
NameMyCaffe.common.Blob< T >
NormalizeData(double? dfMean=null, double? dfStd=null)MyCaffe.common.Blob< T >
numMyCaffe.common.Blob< T >
num_axesMyCaffe.common.Blob< T >
num_true_axesMyCaffe.common.Blob< T >
offset(int n, int c=0, int h=0, int w=0)MyCaffe.common.Blob< T >
offset(List< int > rgIdx)MyCaffe.common.Blob< T >
OneMyCaffe.common.Blob< T >static
PaddedMyCaffe.common.Blob< T >
Percentile(Blob< T > blobY, double dfPercentile)MyCaffe.common.Blob< T >
Reshape(int nNum, int nChannels, int nHeight, int nWidth, bool? bUseHalfSize=null)MyCaffe.common.Blob< T >
Reshape(List< int > rgShape, bool? bUseHalfSize=null)MyCaffe.common.Blob< T >
Reshape(int[] rgShape, bool? bUseHalfSize=null)MyCaffe.common.Blob< T >
Reshape(BlobShape shape, bool? bUseHalfSize=null)MyCaffe.common.Blob< T >
reshape_when_sharingMyCaffe.common.Blob< T >
ReshapeLike(Blob< T > b, bool? bUseHalfSize=null)MyCaffe.common.Blob< T >
Resize(List< int > rgShape)MyCaffe.common.Blob< T >
Save(BinaryWriter bw, bool bData, bool bDiff, bool bIncludeName=true)MyCaffe.common.Blob< T >
SaveBinary(string strFile, bool bData, bool bDiff, bool bIncludeName=true)MyCaffe.common.Blob< T >
SaveToImage(string strFile, bool bNonZeroExistOnly=true, bool bSaveDiff=false, Dictionary< float, Color > rgSpecialValues=null)MyCaffe.common.Blob< T >
SaveToNumpy(string strFile, bool bSaveDiff=false)MyCaffe.common.Blob< T >
SaveToNumpy(string strFile, float[] rgData, int[] rgShape)MyCaffe.common.Blob< T >static
SaveToNumpy(string strFile, int[] rgData, int[] rgShape)MyCaffe.common.Blob< T >static
SaveToNumpy(string strFile, long[] rgData, int[] rgShape)MyCaffe.common.Blob< T >static
scale_data(double df)MyCaffe.common.Blob< T >
scale_data(T fScaleFactor)MyCaffe.common.Blob< T >
scale_diff(double df)MyCaffe.common.Blob< T >
scale_diff(T fScaleFactor)MyCaffe.common.Blob< T >
scale_to_range(double dfMin, double dfMax)MyCaffe.common.Blob< T >
SetCPUData(T[] rg)MyCaffe.common.Blob< T >
SetData(T[] rgData, int nCount=-1, bool bSetCount=true)MyCaffe.common.Blob< T >
SetData(T fVal, int nIdx=-1)MyCaffe.common.Blob< T >
SetData(double dfVal, int nIdx=-1)MyCaffe.common.Blob< T >
SetData(double dfVal, int nStartIdx, int nCount)MyCaffe.common.Blob< T >
SetData(SimpleDatum d, bool bReshape, bool bCopyData=true)MyCaffe.common.Blob< T >
SetDiff(double dfVal, int nIdx=-1)MyCaffe.common.Blob< T >
SetDiff(double dfVal, int nStartIdx, int nCount)MyCaffe.common.Blob< T >
SetDiff(T[] rgDiff, int nCount=-1, bool bSetCount=true)MyCaffe.common.Blob< T >
SetParameter(string strName, double dfVal)MyCaffe.common.Blob< T >
SetPixel(int nX, int nY, byte R, byte G, byte B, TransformationParameter.COLOR_ORDER order=TransformationParameter.COLOR_ORDER.RGB)MyCaffe.common.Blob< T >
SetPixel(int nX, int nY, Tuple< T, T, T > pixel, bool bReturnOriginal=false, TransformationParameter.COLOR_ORDER order=TransformationParameter.COLOR_ORDER.RGB, int nOffset=0)MyCaffe.common.Blob< T >
shape()MyCaffe.common.Blob< T >
shape(int nIdx)MyCaffe.common.Blob< T >
shape_stringMyCaffe.common.Blob< T >
ShapeEquals(BlobProto bp)MyCaffe.common.Blob< T >
Share(Blob< T > b)MyCaffe.common.Blob< T >
ShareData(Blob< T > b)MyCaffe.common.Blob< T >
ShareDiff(Blob< T > b)MyCaffe.common.Blob< T >
snapshot_requestedMyCaffe.common.Blob< T >
std(double? dfMean=null, float[] rgDf=null)MyCaffe.common.Blob< T >
sum(float[] rgDf=null, bool bDiff=false)MyCaffe.common.Blob< T >
sumsq_data()MyCaffe.common.Blob< T >
sumsq_diff()MyCaffe.common.Blob< T >
TagMyCaffe.common.Blob< T >
ToByteArray()MyCaffe.common.Blob< T >
ToDatum()MyCaffe.common.Blob< T >
ToProto(bool bWriteDiff=false)MyCaffe.common.Blob< T >
ToSizeString()MyCaffe.common.Blob< T >
ToString()MyCaffe.common.Blob< T >
ToString(int nMax, bool bDiff=false)MyCaffe.common.Blob< T >
typeMyCaffe.common.Blob< T >
Unsqueeze(int nNumAxes)MyCaffe.common.Blob< T >
Update()MyCaffe.common.Blob< T >
update_cpu_data()MyCaffe.common.Blob< T >
update_cpu_diff()MyCaffe.common.Blob< T >
ValidateData(Blob< T > work, bool bDiff=false)MyCaffe.common.Blob< T >
widthMyCaffe.common.Blob< T >
ZeroMyCaffe.common.Blob< T >static